Math, asked by Anonymous, 3 days ago

Solve it
\lim_{x\to0} \dfrac{-ln(x^2+1)+sin(x^2)}{(cos2x-1)^2}

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to 0}\rm \dfrac{-ln(x^2+1)+sin(x^2)}{(cos2x-1)^2} \\

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{-ln(0+1)+sin(0)}{(cos0-1)^2} \\

\rm \:  =  \: \dfrac{-ln(1)+0}{(1-1)^2} \\

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to 0}\rm \dfrac{-ln(x^2+1)+sin(x^2)}{(cos2x-1)^2} \\

We know,

\boxed{ \rm{ \:ln(1 + x) = x - \dfrac{ {x}^{2} }{2} +  \dfrac{ {x}^{3} }{3} +  \cdots \: }} \\

So,

\boxed{ \rm{ \:ln(1 +  {x}^{2} ) =  {x}^{2}  - \dfrac{ {x}^{4} }{2} +  \dfrac{ {x}^{6} }{3} +  \cdots \: }} \\

Now,

\boxed{ \rm{ \:sinx \:  =  \: x - \dfrac{ {x}^{3} }{3!} +  \dfrac{ {x}^{5} }{5!} +  \cdots \:}} \\

So,

\boxed{ \rm{ \:sin( {x}^{2}) \:  =  \:  {x}^{2}  - \dfrac{ {x}^{6} }{3!} +  \dfrac{ {x}^{10} }{5!} +  \cdots \:}} \\

Now,

\boxed{ \rm{ \:cosx \:  =  \: 1 - \dfrac{ {x}^{2} }{2!} +  \dfrac{ {x}^{4} }{4!} +  \cdots \: \: }} \\

So,

\boxed{ \rm{ \:cos2x \:  =  \: 1 -  {2x}^{2}  +  \dfrac{ {16x}^{4} }{4!} +  \cdots \: \: }} \\

So, on substituting all these values, in above expression, we get

\rm \:  = \displaystyle\lim_{x \to 0}\rm  \frac{ - {x}^{2} + \dfrac{ {x}^{4} }{2} -  \dfrac{ {x}^{6} }{3} +  \cdots \: + {x}^{2}  - \dfrac{ {x}^{6} }{3!} +  \dfrac{ {x}^{10} }{5!} +  \cdots \:}{ {\bigg(1 -  {2x}^{2}  +  \dfrac{ {16x}^{4} }{4!} +  \cdots \: - 1\bigg) }^{2} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm  \frac{  \dfrac{ {x}^{4} }{2} -  \dfrac{ {x}^{6} }{3} +  \cdots \:  - \dfrac{ {x}^{6} }{3!} +  \dfrac{ {x}^{10} }{5!} +  \cdots \:}{ {\bigg(-  {2x}^{2}  +  \dfrac{ {16x}^{4} }{4!} +  \cdots \: \bigg) }^{2} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm  \frac{ {x}^{4}\bigg( \dfrac{1}{2} -  \dfrac{ {x}^{2} }{3} +  \cdots \:  - \dfrac{ {x}^{2} }{3!} +  \dfrac{ {x}^{6} }{5!} +  \cdots \:\bigg)}{  {x}^{4} {\bigg(- 2  +  \dfrac{ {16x}^{2} }{4!} +  \cdots \: \bigg) }^{2} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm  \frac{ \dfrac{1}{2} -  \dfrac{ {x}^{2} }{3} +  \cdots \:  - \dfrac{ {x}^{2} }{3!} +  \dfrac{ {x}^{6} }{5!} +  \cdots \:}{ {\bigg(- 2  +  \dfrac{ {16x}^{2} }{4!} +  \cdots \: \bigg) }^{2} }  \\

\rm \:  =  \: \dfrac{\dfrac{1}{2} }{ \:  \:  \:  {( - 2)}^{2}  \:  \:  \:  \: }

\rm \:  =  \: \dfrac{1}{8}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\displaystyle\lim_{x \to 0}\rm \dfrac{-ln(x^2+1)+sin(x^2)}{(cos2x-1)^2} =  \frac{1}{8} \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by jhajatashankar504
2

Answer:

I hope this helps you and thank you bro.

Attachments:
Similar questions