Math, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 2 days ago

Solve it:–
 \sf{2x \:  -  \:  3 \:  =   \:  \sqrt{2x {}^{2} - 2x + 21 } }
_______
It can be solved by quadratic method.

Dont sPaM

Answers

Answered by VεnusVεronίcα
149

Required answer :

The value of x is 6 for the given equation.

 \\

~~~~~~~~_____________

 \\

Explaination:

Given :

 \bf :  \implies \:  \: \red{ 2x - 3 =  \sqrt{2 {x}^{2}  - 2x + 21} }

 \:

Squaring on both sides :

 \bf :  \implies \:  \:\purple{  {(2x - 3)}^{2}  = ( { \sqrt{2 {x}^{2}  - 2x + 21} )}^{2}}

 \:

Using the identity (a b)² = + 2ab for LHS :

  \bf :  \implies \:  \:  \red{ {(2x)  ^{2} +  {(3)}^{2} - 2(2x)(3)  =  {( \sqrt{2 {x}^{2} - 2x + 21 } )}^{2} }}

 \:

 \bf :  \implies \:  \:  \purple{4 {x}^{2}  - 12x  + 9 =  {( \sqrt{2 {x}^{2} - 2x + 21 } )}^{2} }

 \:

Square and square root gets cancelled on RHS :

 \bf :  \implies \:  \:  \red{4 {x}^{2}  - 12x + 9 = 2 {x}^{2} - 2x + 21 }

 \:

  \bf : \implies \:  \:  \purple{4 {x}^{2}  - 2 {x}^{2} - 12x + 2x + 9 - 21 = 0 }

 \:

 \bf :  \implies \:  \:  \red{2 {x}^{2} - 10x - 12 = 0 }

 \:

Removing 2 as the common term and cancelling :

 \bf  :   \implies \:  \:  \purple{2 \: ( {x}^{2} - 5x - 6) = 0 }

 \:

 \bf :  \implies \:  \:  \red{ {x}^{2} - 5x - 6 =  0 \div 2 }

 \:

  \bf : \implies \:  \:  \purple{ {x}^{2} - 5x - 6 = 0 }

 \:

Factorising it by splitting the middle term :

 \bf  :   \implies \:  \:  \red{ {x}^{2} -  6x + x - 6 = 0 }

 \:

 \bf :  \implies \:  \:  \purple{x \: (x - 6) + 1 \:  (x - 6) = 0}

 \:

 \bf  : \implies \:  \:   \red{(x - 6) \: (x + 1) = 0}

 \:

 { \bf :  \implies \:  \:  \purple{ x = 6 \:  and \: x =    - 1}}

\:

The value of x can't be 1 as it can't be negative.

 \\

~~~~~~~~_____________

 \\

Verification:

Firstly, substituting x with 6 :

 \bf :  \implies \:   \: \red{2x - 3 =  \sqrt{2 {x}^{2}  - 2x + 21} }

 \:

 \bf :  \implies \:  \:  \purple{2(6)  - 3 =  \sqrt{2 {(6)}^{2} - 2(6) + 21 } }

 \:

 \bf :  \implies \:  \: \red{12 - 3 =  \sqrt{2(36) - 12 + 21} }

 \:

 \bf :  \implies \:  \:  \purple{9 =  \sqrt{72 + 9} }

 \:

 \bf :  \implies \:  \:  \red{9 =  \sqrt{81} }

 \:

 \bf :  \implies \:  \:  \purple{9 = \: 9}

~

\bf :\implies~~ \red{LHS=RHS}

 \:

Henceforth, verified!


anindyaadhikari13: Perfect!
Answered by pdpooja100
19

 \begin{gathered} \\  \large{ \underline{ \underline{ \pmb{ \sf{ \maltese{ \color{red}{ \: Given \:  in  \: the \:  Question \:  that, \: }}}}}}} \\  \\  \end{gathered}

\begin{gathered} \\   \sf{2x \: - \: 3 \: = \: \sqrt{2x {}^{2} - 2x + 21 } } \\  \\  \end{gathered}

 \begin{gathered} \\  \large{ \underline{ \underline{ \pmb{ \sf{ \maltese{ \color{blue}{ \: On \:  Squaring \: both \:  the \:  sides, \: }}}}}}} \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{(2x \: - \: 3) {}^{2}  \: = \: {2x {}^{2} - 2x + 21 } } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{(2x) {}^{2}  \:   -  \: (2) \: (2x) \: (3) \: = \: {2x {}^{2} - 2x + 21 } } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{(4x) {}^{2}  + 9 - 12x \: = \: {2x {}^{2} - 2x + 21 } } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{2x ^{2}  =  10x + 12  } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{2x ^{2}  - 10x - 12 = 0 } \\  \\  \end{gathered}

 \begin{gathered} \\  \large{ \underline{ \underline{ \pmb{ \sf{ \maltese{ \color{springgreen}{ \: On  \: Splitting \:  the  \: mid \:  term, \: }}}}}}} \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{2x ^{2}  - 12x  + 2x - 12 = 0 } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{2x(x - 6) + (x - 6) = 0 } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{(2x  + 2)(x - 6) = 0 } \\  \\  \end{gathered}

 \begin{gathered} \\  \large{ \underline{ \underline{ \pmb{ \sf{ \maltese{ \color{purple}{ \: Therefore \: the  \: values \:  of  \: x  \: are, \: }}}}}}} \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{(2x  + 2) = 0 } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{x =  - 1 } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{ (x - 6) = 0 } \\  \\  \end{gathered}

\begin{gathered} \\  \:  \longmapsto \: \sf{ x  =  6 } \\  \\  \end{gathered}

\begin{gathered} \\   \\    \underline{\rule{250pt}{8pt}} \\  \end{gathered}

^_^

Similar questions