Math, asked by Anonymous, 1 month ago

Solve it
\sf \dfrac{cot \theta}{cot \theta - cot3 \theta}+\dfrac{tan\theta}{tan\theta-tan3\theta} =

Answers

Answered by BeArmed
8

We know that,

Substituting the values,

\sf \dfrac{cot \theta}{cot \theta - cot3 \theta}+\dfrac{tan\theta}{tan\theta-tan3\theta}

\sf = \: 1

Therefore,

Answered by karv05163
3

Step-by-step explanation:

Given,

cotθ / cotθ - cot3θ + tanθ / tanθ - tan3θ

To find :-

we have to solve

 \cot(a)  \div  \cot(a)  -  \cot(3a)  \\

Solution:-

 \cot(a)  \div  \cot(a)  -  \cot(3a)  \\

 =  >  \cot(a) ( \tan(a)  -  \tan(3a) )  +  \tan(a) ( \cot(a)  -  \cot(3a) ) \div ( \cot(a)  -  \cot(3a) )( \tan(a)  -  \tan(3a)  \\

 = > 1 -  \cot(a)  \tan(3a)  + 1 -  \tan(a) \cot(3a)   \div 1 -  \cot(a)  \tan(3a)  \\  =  > 2 -  \cot(a)  +  \tan(3a)  -  \tan(a)  \cot(3a)  \div 2 -  \cot(a) \tan(3a)  -  \tan(a)  \cot(3a)  \\

hence \: numerators \: and \: denominator \: are \: equal

So answer is 1

Attachments:
Similar questions