Math, asked by ItzShrestha41, 1 month ago

Solve it ^^

Attachments:

Answers

Answered by shivangi4695
28

Answer:

Ans is in the pic.

Step-by-step explanation:

By the help of my cousin because he is in 12th class and I'm in 8th class.

Attachments:
Answered by BeautifullMind
637

The Given equation is (a² + b²)x² + 2(ac + bd)x + (c² + d²)

  \begin{array}{l l l} \\ \large\sf \bf \fbox \red{Discriminant = b²-4ac} \\ \\ \mapsto \sf{D=2(ac+bd) {}^{2} −4(a {}^{2} +b {}^{2} )(c {}^{2} +d {}^{2} )} \\ \\\mapsto \sf{D=4(ac+bd) {}^{2} −4(a {}^{2} +b {}^{2} )(c {}^{2} +d {}^{2} )} \\\\\mapsto\sf{D=4[(ac+bd) {}^{2} −(a {}^{2} +b {}^{2} )(c {}^{2} +d {}^{2} )] }\\\\ \mapsto\sf{ D=4[ \cancel {a {}^{2} c {}^{2} }+ \cancel {b {}^{2} d {}^{2}} +2acbd  \cancel {−a {}^{2} c {}^{2}} −a {}^{2} d {}^{2} −b {}^{2} c {}^{2}  \cancel{−b {}^{2} d {}^{2}} ]} \\\\\mapsto  \sf{D=4[2acbd−a {}^{2} d {}^{2} −b {}^{2} c {}^{2} ] }\\\\\mapsto\sf{D=−4[a {}^{2} d {}^{2} +b {}^{2} c {}^{2} −2adbc]} \\\\ \mapsto\sf \bf \fbox{D \: = \:  −4(ad−bc)²} \\ \\\sf \bf{We \:   \: have,  ad \neq \: bc}\\\\ \rightarrow\sf{ad−bc=0} \\\\ \rightarrow\sf{(ad−bc)² \: &gt;0} \\\\\rightarrow\sf{−4(ad−bc)²&lt;0 }\\\\\rightarrow\sf \bf \fbox{D&lt; \: 0 }\\ \\ \bf \sf \fbox \blue{Hence,  \: the \:  given \:  equation \:  has \:  no \:  real \:  roots.} \end{array}</p><p></p><p>

Similar questions