Math, asked by aishowrya, 1 year ago

solve it !

Thanks :D

Attachments:

Answers

Answered by Anonymous
8
Hi there !!

Refer to the attachment for the method !
Attachments:

Anonymous: comment below if any doubts :-)
Anonymous: is this the answer u were expecting ??
Answered by Swarup1998
7
➡HERE IS YOUR ANSWER⬇

 \frac{ {m}^{4}  \times  {n}^{4} \times ( {mn})^{ - 4}  }{( {m}^{3}  \times   {n}^{ - 3} )}  \\  \\  = \frac{ {m}^{4}  \times  {n}^{4} \times  {m}^{ - 4}  \times  {n}^{ - 4}  }{ {m}^{3}  \times   {n}^{ - 3} } \\  \\ (since \:  \: ( {ab})^{k}   = {a}^{k}  \times  {b}^{k}  )\\  \\  =  \frac{( {m}^{4}  \times  {m}^{ - 4}) \times ( {n}^{4}  \times  {n}^{ - 4} ) }{ {m}^{3}  \times  {n}^{ - 3} }  \\  \\  =   \frac{ {m}^{(4 - 4)}  \times  {n}^{(4 - 4)} }{ {m}^{3}  \times  {n}^{ - 3} }  \\  \\ (since \:  \:  {a}^{k}  \times  {a }^{ - k}  =  {a}^{k - k} ) \\  \\  =  \frac{ {m}^{0}  \times  {n}^{0} }{ {m}^{3}   \times  {n}^{ - 3} }  \\  \\  =  \frac{1 \times 1}{ {m}^{3}  \times  {n}^{ - 3} }   \:  \: (since \:  \:  {a}^{0}  = 1) \\  \\  =  \frac{1}{ {m}^{3} \times  {n}^{ - 3}  }  \\  \\  =  \frac{ {n}^{3} }{ {m}^{3} }  \:  \: (since \:  \:  \frac{1}{ {a}^{ - k} }  =  {a}^{k} ) \\  \\  = (  { \frac{n}{m} })^{3}  \\  \\ (since \:  \: ( { \frac{a}{b} })^{k}  =  \frac{ {a}^{k} }{ {b}^{k} } )

⬆HOPE THIS HELPS YOU⬅
Similar questions