Math, asked by Anonymous, 11 months ago

solve it to get the value of a/d

→ Put n = 2mr/(m+r)

Attachments:

Answers

Answered by ravikantsharmagaheli
5

Answer:

sending attachement hope it will help I think you know rhe answer

Attachments:
Answered by DSamrat
16

Answer:

 \frac{a}{d}  =  \:   - \frac{n}{2}

Step-by-step explanation:

 \frac{a}{d}  \:  =  \:  \frac{mr -  {n}^{2} }{2n - m - r}  \\  \\

Putting the value of n in the above equation,

we get;

 \frac{a}{d}  =  \frac{mr -  { \frac{2mr}{(m + r)} }^{2} }{2 \frac{2mr}{(m + r)}  - (m + r)}  \\  \\

 \:  \:  \:  \:   \: =  \frac{ \frac{mr {(m + r)}^{2}  - 4 {m}^{2}  {r}^{2} }{ {(m + r)}^{2} } }{ \frac{4mr -  {(m + r)}^{2} }{(m + r)} }  \\  \\  \\ \\

  \:  \:  \:  \:   \: =  \frac{mr {(m + r)}^{2} - 4 {m}^{2}  {r}^{2}  }{(m + r) |4mr -  (m + r)^{2}| }  \\  \\

 \:  \:  \:  \:   \: =  \frac{   - mr |4mr -  (m + r)^{2}|}{(m + r) |4mr -  (m + r)^{2}| }   \\  \\

 \:  \:  \:  \:  \:  \:  =  \frac{ - mr}{(m + r)}  \times  \frac{2}{2}  \\  \\

 \:  \:  \:  \:  \:  =  \frac{ - 2mr}{2(m + r)}  \\  \\

 \:  \:  \:  \:  \:  \\  \\  \:  \:  \:  \:  \:  =  \frac{ - n}{2}  \\

Similar questions