solve it urgent don't post wrong one I will report it
Attachments:
Anonymous:
nobody knows
Answers
Answered by
8
To prove: sin⁸ + cos⁸ = 1 - 4sin²θ . cos²θ + 2sin⁴θ . cos⁴θ
Proof:
w.k.t., sin²θ + cos²θ = 1
On squaring both sides, we get
(sin²θ + cos²θ)² = 1²
⇒ sin⁴θ + cos⁴θ + 2sin²θ . cos²θ = 1
⇒ sin⁴θ + cos⁴θ = 1 - 2sin²θ . cos²θ
On again squaring both sides, we get
(sin⁴θ + cos⁴θ) = (1 - 2sin²θ . cos²θ)²
⇒ sin⁸θ + cos⁸θ + 2sin⁴θ . cos⁴θ = 1 + 4sin⁴θ . cos⁴θ - 4sin²θ . cos²θ
⇒ sin⁸θ + cos⁸θ = 1 + 4sin⁴θ . cos⁴θ - 4sin²θ . cos²θ - 2sin⁴θ . cos⁴θ
⇒ sin⁸θ + cos⁸θ = 1 + 2sin⁴θ . cos⁴θ - 4sin²θ . cos²θ
⇒ sin⁸θ + cos⁸θ = 1 - 4sin²θ . cos²θ + 2sin⁴θ . cos⁴θ
Hence proved
Formulas used :-
1) (a+b)² = a² + b² + 2ab
2) (a-b)² = a² + b² - 2ab
Similar questions