Math, asked by diwanamrmznu, 20 days ago

solve it urgent




dont spam​

Attachments:

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

According to the binomial theorem, we have,

\left(a+b\right)^{n}={\,}^{n}C_{0}\,{a}^{n}+{\,}^{n}C_{1}\,{a}^{n-1}\,{b}+{\,}^{n}C_{2}\,{a}^{n-2}\,{b}^{2}+\cdots+{\,}^{n}C_{n}\,{b}^{n}

To obtain the expression given in the question,

Put a = b = 1,

\implies\left(1+1\right)^{n}={\,}^{n}C_{0}\,{(1)}^{n}+{\,}^{n}C_{1}\,{(1)}^{n-1}\,{(1)}+{\,}^{n}C_{2}\,{(1)}^{n-2}\,{(1)}^{2}+\cdots+{\,}^{n}C_{n}\,{(1)}^{n}

\implies\left(2\right)^{n}=1+{\,}^{n}C_{1}+{\,}^{n}C_{2}+\cdots+{\,}^{n}C_{n}

\implies\left(2\right)^{n}-1={\,}^{n}C_{1}+{\,}^{n}C_{2}+\cdots+{\,}^{n}C_{n}

Answered by mathdude500
4

Question :-

\rm \: What \: is  \: C(n, 1) +  \: C(n, 2) +   \cdots +  \: C(n, n)  =  \\

\rm \: (a) \:  \:  \: 2 +  {2}^{2} +  {2}^{3}  +  \cdots \:  +  {2}^{n}  \\

\rm \: (b) \:  \:  \: 1 + 2 +  {2}^{2} +  {2}^{3}  +  \cdots \:  +  {2}^{n}  \\

\rm \: (c) \:  \:  \: 1 + 2 +  {2}^{2} +  {2}^{3}  +  \cdots \:  +  {2}^{n - 1}  \\

\rm \: (d) \:  \:  \:  2 +  {2}^{2} +  {2}^{3}  +  \cdots \:  +  {2}^{n - 1}  \\

\large\underline{\sf{Solution-}}

We know that

\rm \: {(1 + x)}^{n} =  \: ^{n}C_{0} + \: ^{n}C_{1}x +  \: ^{n}C_{2} {x}^{2} +  \cdots \cdots +  \: ^{n}C_{n} {x}^{n}

can be further rewritten as

\rm \: {(1 + x)}^{n} =  \: 1 + \: C(n, 1)x +  \: C(n, 2) {x}^{2} +  \cdots \cdots +  \: C(n, n) {x}^{n}  \\

On substituting x = 1, we get

\rm \: {(1 + 1)}^{n} =  \: 1 + \: C(n, 1) +  \: C(n, 2) +  \cdots \cdots +  \: C(n, n) \\

\rm \: {2}^{n} =  \: 1 + \: C(n, 1) +  \: C(n, 2) +  \cdots \cdots +  \: C(n, n) \\

\rm\implies \: \: C(n, 1) +  \: C(n, 2) +   \cdots +  \: C(n, n) =  {2}^{n} - 1 -  - (1) \\

Now, Consider

\rm \: 2 +  {2}^{2} +  {2}^{3}  +  \cdots \:  +  {2}^{n}  \\

Since, its a GP series with First term 2 and common ratio with n terms.

So, sum of n terms of GP series is

\rm \: S_n \:  =  \:  \frac{2( {2}^{n}  - 1)}{2 - 1}  \\

\rm\implies \:S_n = 2( {2}^{n} - 1) \ne  C(n, 0) + C(n, 1) + ... + C(n, n) \\

Now, Consider

\rm \:1 +  2 +  {2}^{2} +  {2}^{3}  +  \cdots \:  +  {2}^{n}  \\

Since, its a GP series with First term 1 and common ratio with n + 1 terms.

So, sum of n + 1 terms of GP series is

\rm \: S_{n + 1} \:  =  \:  \frac{1( {2}^{n + 1}  - 1)}{2 - 1}  \\

\rm\implies \:S_{n + 1} = {2}^{n + 1} - 1 \ne  C(n, 0) + C(n, 1) + ... + C(n, n) \\

Now, Consider

\rm \:1 +  2 +  {2}^{2} +  {2}^{3}  +  \cdots \:  +  {2}^{n - 1}  \\

Since, its a GP series with First term 1 and common ratio with n terms.

So, sum of n terms of GP series is

\rm \: S_n \:  =  \:  \frac{1( {2}^{n}  - 1)}{2 - 1}  \\

\rm\implies \:S_n = {2}^{n} - 1=C(n, 0) + C(n, 1) + ... + C(n, n) \\

Now, Consider

\rm \: 2 +  {2}^{2} +  {2}^{3}  +  \cdots \:  +  {2}^{n - 1}  \\

Since, its a GP series with First term 2 and common ratio with n - 1 terms.

So, sum of n - 1 terms of GP series is

\rm \: S_{n - 1} \:  =  \:  \frac{2( {2}^{n -  1}  - 1)}{2 - 1}  \\

\rm\implies \:S_{n - 1} = {2}^{n} - 2 \ne  C(n, 0) + C(n, 1) + ... + C(n, n) \\

So, from above calculations, we concluded that option (c) is correct.

Similar questions