Solve it urgently [Trigonometry Class X]
Attachments:

Answers
Answered by
2
See the attachment for answer!
1/cos ∅ = sec ∅
Sin ∅/cos ∅ = tan ∅
Hope it helps :)
1/cos ∅ = sec ∅
Sin ∅/cos ∅ = tan ∅
Hope it helps :)
Attachments:

Answered by
3
I am using ∅ instead of theta
Solving from R.H.S
(sec∅-tan∅)^2
= sec²∅-2sec∅*tan∅+tan²∅
=1/cos²∅-2(1/cos∅)(sin∅/cos∅)+sin²∅/cos²∅
=1-2sin∅+sin²∅/cos²∅
=1-sin∅-sin∅+sin²∅/cos²∅
=1(1-sin∅)-sin∅(1-sin∅)/cos²∅
=(1-sin∅)(1-sin∅)/1-sin²∅
=(1-sin∅)(1-sin∅)/(1+sin∅)(1-sin∅)
=(1-sin∅)/(1+sin∅)
=L.H.S
Solving from R.H.S
(sec∅-tan∅)^2
= sec²∅-2sec∅*tan∅+tan²∅
=1/cos²∅-2(1/cos∅)(sin∅/cos∅)+sin²∅/cos²∅
=1-2sin∅+sin²∅/cos²∅
=1-sin∅-sin∅+sin²∅/cos²∅
=1(1-sin∅)-sin∅(1-sin∅)/cos²∅
=(1-sin∅)(1-sin∅)/1-sin²∅
=(1-sin∅)(1-sin∅)/(1+sin∅)(1-sin∅)
=(1-sin∅)/(1+sin∅)
=L.H.S
Similar questions