Solve it urgently [Trigonometry Class X]
Attachments:
Answers
Answered by
3
here is the answer hope it helps u
Attachments:
Answered by
4
Hi !
x = a secθ + b tanθ
y = a tanθ + b secθ
LHS = x² - y²
(a secθ + b tanθ )² - (a tanθ + b secθ )²
a²sec²θ + 2ab secθ tanθ + b²tan²θ - (a²tan²θ + 2ab secθ tanθ + b²sec²θ )
a²sec²θ + 2ab secθ tanθ + b²tan²θ - a²tan²θ - 2ab secθ tanθ - b²sec²θ
a²sec²θ - a²tan²θ + b²tan²θ - b²sec²θ
a²(sec²θ - tan²θ ) + b²(tan²θ -sec²θ)
we know that ,
sec²θ - tan²θ = 1
tan²θ -sec²θ = -1
a²(1) + b²( -1)
= a² - b²
= LHS
x = a secθ + b tanθ
y = a tanθ + b secθ
LHS = x² - y²
(a secθ + b tanθ )² - (a tanθ + b secθ )²
a²sec²θ + 2ab secθ tanθ + b²tan²θ - (a²tan²θ + 2ab secθ tanθ + b²sec²θ )
a²sec²θ + 2ab secθ tanθ + b²tan²θ - a²tan²θ - 2ab secθ tanθ - b²sec²θ
a²sec²θ - a²tan²θ + b²tan²θ - b²sec²θ
a²(sec²θ - tan²θ ) + b²(tan²θ -sec²θ)
we know that ,
sec²θ - tan²θ = 1
tan²θ -sec²θ = -1
a²(1) + b²( -1)
= a² - b²
= LHS
Similar questions