Math, asked by RosySeraj, 1 year ago

solve it..value of x

Attachments:

Answers

Answered by Mankuthemonkey01
7
Given :-

 {3}^{2x + 4}  + 1 = 2 \times  {3}^{x + 2}


we can write 3^2x as
 {3}^{2x}  =  ({3}^{x} ) {}^{2}


and,
 {3}^{2x + 4}  =  {3}^{2x}  \times  {3}^{4}  \\  \\  =  >  ({3}^{x} ) {}^{2}  \times  {3}^{4}


So,

 {3}^{2x + 4}  + 1 = 2 \times  {3}^{x + 2}  \\  \\  =  > ( {3}^{x} ) {}^{2}  \times  {3}^{4}  + 1 = 2 \times  {3}^{x}  \times 3 {}^{2}  \\  \\  =  > ( {3}^{x} ) {}^{2}  \times 81 + 1 = 2 \times  {3}^{x}  \times 9 \\  \\  =  > ( {3}^{x} ) {}^{2}  \times 81 + 1 = 18 \times  {3}^{x}
let \:  {3}^{x}  = y
so \\ ( {3}^{x} ) {}^{2}  \times 81 + 1 = 18 \times  {3}^{x}  \\  \\  =  >  81{y}^{2}  + 1 = 18y \\  \\  =  > 81 {y}^{2}  - 18y + 1 = 0


Now we have,

81y² - 18y + 1 = 0

By splitting the middle term,

81y² - 9y - 9y + 1 = 0

=> 9y(9y - 1) - 1(9y - 1) = 0

=> (9y - 1)(9y - 1) = 0

=> (9y - 1)² = 0

=> 9y - 1 = 0

=> 9y = 1

=> y = 1/9

Now we have assumed that,
y =  {3}^{x}

But y = 1/9

 =  >  {3}^{x}  =  \frac{1}{9}  \\  \\  =  >  {3}^{x}  =  {3}^{ - 2}  \\  \\  =  > x =  - 2


So the value of x is -2


Hope it helps dear friend ☺️

RosySeraj: thanku
Mankuthemonkey01: welcome ;)
RosySeraj: r que. bhji hu plz try
Similar questions