Solve it with a proper explanation :-)
Kindly do not spam !!
Answers
Answer:
GIVEN :–
\begin{gathered} \\ \implies \bf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log(\sqrt{1 - x^2}) \\ \end{gathered}
⟹y=
1−x
2
xcos
−1
x
−log(
1−x
2
)
TO PROVE :–
\begin{gathered} \\ \implies\bf \dfrac{dy}{dx} = \dfrac{cos^{-1}x}{(1-x^2)^{\frac{3}{2}}} \\ \end{gathered}
⟹
dx
dy
=
(1−x
2
)
2
3
cos
−1
x
SOLUTION :–
\begin{gathered} \\ \implies \bf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log(\sqrt{1 - x^2}) \\ \end{gathered}
⟹y=
1−x
2
xcos
−1
x
−log(
1−x
2
)
• We should write this as –
\begin{gathered} \\ \implies \bf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log( \{1 - x^2 \}^{ \frac{1}{2} } ) \\ \end{gathered}
⟹y=
1−x
2
xcos
−1
x
−log({1−x
2
}
2
1
)
\begin{gathered} \\ \implies \bf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - \dfrac{1}{2} log(1 - x^2) \: \: \: \: \: \: \: \: \: [ \: \because \: \: log( {a}^{b} ) = b log(a) ] \\ \end{gathered}
⟹y=
1−x
2
xcos
−1
x
−
2
1
log(1−x
2
)[∵log(a
b
)=blog(a)]
\begin{gathered} \\ \implies \bf y =cos^{-1}x. \left( \dfrac{x}{\sqrt{1 - x^2}} \right)- \dfrac{1}{2} log(1 - x^2)\\ \end{gathered}
⟹y=cos
−1
x.(
1−x
2
x
)−
2
1
log(1−x
2
)
• Now Differentiate with respect to 'x' –
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} = \dfrac{d}{dx} \left\{ cos^{-1}x. \left( \dfrac{x}{\sqrt{1 - x^2}} \right) \right \} - \dfrac{1}{2} \dfrac{d}{dx} \left \{ log(1 - x^2) \right\}\\ \end{gathered}
⟹
dx
dy
=
dx
d
{cos
−1
x.(
1−x
2
x
)}−
2
1
dx
d
{log(1−x
2
)}
• Using identity –
\begin{gathered} \\ \implies \bf \dfrac{d(u.v)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \\ \end{gathered}
⟹
dx
d(u.v)
=u
dx
dv
+v
dx
du
• And –
\begin{gathered} \\ \implies \bf \dfrac{d \left( \dfrac{u}{v} \right)}{dx} = \dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx} }{ {v}^{2} } \\ \end{gathered}
⟹
dx
d(
v
u
)
=
v
2
v
dx
du
−u
dx
dv
• So that –
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} =cos^{-1}x .\frac{d}{dx} \left( \dfrac{x}{\sqrt{1 - x^2}} \right) + \left( \dfrac{x}{\sqrt{1 - x^2}} \right). \dfrac{d}{dx}(cos^{-1}x) - \dfrac{1}{2} \dfrac{d}{dx} log(1 - x^2)\\ \end{gathered}
⟹
dx
dy
=cos
−1
x.
dx
d
(
1−x
2
x
)+(
1−x
2
x
).
dx
d
(cos
−1
x)−
2
1
dx
d
log(1−x
2
)
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} =cos^{-1}x \left( \dfrac{ \sqrt{1 - {x}^{2} } - x \left( \dfrac{ - 2x}{2 \sqrt{1 - {x}^{2} } } \right)}{ \{\sqrt{1 - x^2} \}^{2} } \right) + \left( \dfrac{x}{\sqrt{1 - x^2}} \right). \left( \dfrac{ - 1}{\sqrt{1 - x^2}} \right) - \dfrac{1}{2} \dfrac{( - 2x)}{(1 - x^2)}\\ \end{gathered}
⟹
dx
dy
=cos
−1
x
⎝
⎜
⎜
⎜
⎛
{
1−x
2
}
2
1−x
2
−x(
2
1−x
2
−2x
)
⎠
⎟
⎟
⎟
⎞
+(
1−x
2
x
).(
1−x
2
−1
)−
2
1
(1−x
2
)
(−2x)
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} =cos^{-1}x \left( \dfrac{ \sqrt{1 - {x}^{2} } + x \left( \dfrac{x}{\sqrt{1 - {x}^{2} } } \right)}{1 - x^2}\right) + \left( \dfrac{ - x}{1 - x^2}\right) + \dfrac{( x)}{(1 - x^2)}\\ \end{gathered}
⟹
dx
dy
=cos
−1
x
⎝
⎜
⎜
⎜
⎛
1−x
2
1−x
2
+x(
1−x
2
x
)
⎠
⎟
⎟
⎟
⎞
+(
1−x
2
−x
)+
(1−x
2
)
(x)
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} =cos^{-1}x \left( \dfrac{ \dfrac{ {( \sqrt{1 - {x}^{2} } )}^{2} + {x}^{2} }{ \sqrt{1 - {x}^{2} } } }{1 - x^2}\right) + \left( \dfrac{0}{1 - x^2}\right) \\ \end{gathered}
⟹
dx
dy
=cos
−1
x
⎝
⎜
⎜
⎜
⎜
⎛
1−x
2
1−x
2
(
1−x
2
)
2
+x
2
⎠
⎟
⎟
⎟
⎟
⎞
+(
1−x
2
0
)
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} =cos^{-1}x \left( \dfrac{ \dfrac{ {1 - {x}^{2} }+ {x}^{2}}{ \sqrt{1 - {x}^{2} } } }{1 - x^2}\right) + 0 \\ \end{gathered}
⟹
dx
dy
=cos
−1
x
⎝
⎜
⎜
⎜
⎛
1−x
2
1−x
2
1−x
2
+x
2
⎠
⎟
⎟
⎟
⎞
+0
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} =cos^{-1}x \left( \dfrac{1}{(1 - x^2 )\sqrt{1 - {x}^{2} } }\right) \\ \end{gathered}
⟹
dx
dy
=cos
−1
x(
(1−x
2
)
1−x
2
1
)
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} =cos^{-1}x \left( \dfrac{1}{(1 - x^2 )^{ \frac{3}{2} } }\right) \\ \end{gathered}
⟹
dx
dy
=cos
−1
x(
(1−x
2
)
2
3
1
)
\begin{gathered} \\ \implies \bf \dfrac{dy}{dx} =\dfrac{cos^{-1}x}{(1 - x^2 )^{ \frac{3}{2} } }\\ \end{gathered}
⟹
dx
dy
=
(1−x
2
)
2
3
cos
−1
x
ans of your new question