Math, asked by Steph0303, 1 year ago

Solve it with all the steps included.

Attachments:

Answers

Answered by Shubhendu8898
18
Refer to attachment............:-)
Attachments:
Answered by Anonymous
102

Question :

solve for x.

 log_{2}(4 {}^{x + 1} + 4 ) . log_{2}(4 {}^{x} + 1 )  =  log_{ \frac{1}{2} }( \frac{1}{8} )

{\purple{\boxed{\large{\bold{Properties \: of \: Logarithms }}}}}

 log_{a}(a)  = 1

 log_{a}(b {}^{n} )  = n log_{a}(b)

 log_{b {}^{c} }(a)  =  \frac{1}{c}  log_{b}(a)

 log_{a}(x y )  =  log_{a}(x )  +  log_{a}(y)

 \huge{ \underline{ \underline{ \green{ \sf{ Detailed \: Answer :}}}}}

First simplify the terms

LHS :

=  log_{2}(4 {}^{x + 1} + 4 ) . log_{2}(4 {}^{x} + 1 )

 =  log_{2}(4(4 {}^{x} + 1) ). log_{2}(4 {}^{x} + 1 )

 = ( log_{2}(4)  +  log_{2}(4 {}^{x} + 1 ) ). log_{2}(4 {}^{x} + 1 )

 = (2 log_{2}(2)  +  log_{2}(4 {}^{x}  + 1) . log_{2}(4 {}^{x}  + 1)

(2 +  log_{2}(4 {}^{x} + 1 ) . log_{2}(4 {}^{x}  + 1)

RHS :

 =  log_{ \frac{1}{2} }( \frac{1}{8} )

 =  log_{ \frac{1}{2} }( (\frac{1}{2})  {}^{3} )

 = 3 log_{ \frac{1}{2} }( \frac{1}{2} )

 = 3

→now equate LHS and RHS

(2 +  log_{2}(4 {}^{x} + 1 ) ) .( log_{2}(4 {}^{x} + 1 )  = 3

let  4 {}^{x + 1} + 4 =  t

Thus ,

(2 + t).t = 3

t {}^{2}  + 2t - 3 = 0

t {}^{2}  + 3t - t  - 3 = 0

t(t + 3) - 1(t + 3) = 0

(t + 3)(t - 1) = 0

→t = 1 or -3

Case 1:

if t = 1

  log_{2}(4 {}^{x} + 1 )  =  1

2 = 4 {}^{x}  + 1

4 {}^{x}  = 1

x = 0

Case 2:

if x= -3

  log_{2}(4 {}^{x} + 1 )  =  -3

2 {}^{ - 3}  = 4 {}^{x}  + 1

 \frac{1}{8}  - 1 = 4 {}^{x}

4 {}^{x}  =  -  \frac{7}{8}

which is not possible

Therefore,

{\red{\boxed{\large{\bold{x = 0 </p><p>}}}}}

or

\Large\boxed{\green{ x = </p><p>log_{10}(1)}}

Similar questions