Physics, asked by Anonymous, 10 months ago

solve it with correct explaination........and plzzzz avoid spamming.........​

Attachments:

Answers

Answered by IamIronMan0
6

Answer:

The carpet has three kind of energies transational , rotational and potential .

When r = R

mass = m , rotational energy = 0 , transitional = 0

Potential energy =

mg r

When r = R/2

mass

  =  \rho(\pi( { \frac{r}{2}) }^{2} l) =  \frac{ \rho \: \pi {r}^{2}l }{4} =  \frac{m}{4}   \\ \{since \: m =  \rho v =  \rho\pi {r}^{2} l \}

Rotational energy

 =  \frac{1}{2} i { \omega}^{2}  =  \frac{1}{2} ( \frac{ \frac{m}{4} ( \frac{r}{2}) {}^{2}  }{2} )( \frac{v}{ \frac{r}{2}}{) {}^{2}  }  =  \frac{1}{16} m {v}^{2}  \\  \\ i.e .\:  \:  \: v = wr

Translational Energy

 =  \frac{1}{2}  \frac{m}{4}. {v}^{2}  =  \frac{m {v}^{2} }{8}

Potential energy

mgh =  \frac{m}{4} .g. \frac{r}{2}  =  \frac{mgr}{8}

 \pink{use \: energy \: conservation}

 \green{rot. + ke + pe= const} \\  \\ 0 + 0 + mgr =  \frac{m {v}^{2} }{16}  +  \frac{m {v}^{2} }{8}  +  \frac{mgr}{8}  \\  \\ mgr(1 -  \frac{1}{8} ) = m {v}^{2} ( \frac{1}{16}  +  \frac{1}{8} ) \\  \\  \frac{7mgr}{8}  =  \frac{3m {v}^{2} }{16}  \\  \\  {v}^{2}  =  \frac{14gr}{3}  \\  \\ v =  \sqrt{ \frac{14gr}{ 3} }

Attachments:
Similar questions