Math, asked by roaz, 4 months ago

solve it with explanation​

Attachments:

Answers

Answered by BrainlyEmpire
9

Given:-

  • \rm\sin A + \sin^2 A = 1

To Prove:+

  • \rm\cos^2A+\cos^4A = 1

 \rule{320}{1}

  • We will use only one identity:-

  • \rm 1-\sin^2\theta = \cos^2\theta

Proof:-

\rm\textsf{Consider }\sin A + \sin^2A=1 \\\\\\ \implies \rm \sin A=1-\sin^2A\\\\\\ \implies \rm\sin A=\cos^2A \\\\\\ \textsf{Squaring both sides} \\\\\\ \implies\rm \sin^2 A=\cos^4 A \\\\\\ \implies \rm 1-\cos^2 = \cos^4A\\\\\\ \implies \rm 1 = \cos^2 A+\cos^4 A \\\\\\ \implies \boxed{\rm \cos^2A+\cos^4A=1} \\\\\\ \mathcal{HENCE\ \ PROVED}

Answered by itzcutiepie123426
1

sin A + sin² A=1

sin A=1-sin²A

(sin)²=(cos²A)²

sin²A=cosA

1-cos²A=cosA

cos²A+cosA=1

MARK IT AS BRAINLIEST

Similar questions