Math, asked by rajpalsing1p1yksd, 1 year ago

solve it with solution

Attachments:

Answers

Answered by Anonymous
11
Hey there !!


▶Solve :-

 \bf  {5}^{ \sqrt{x} }  \times  {2}^{ \sqrt{y} }  = 100.

[ Now, can we right 100 = 25 × 4 , Because 25 × 4 = 100 . ]


\bf  {5}^{ \sqrt{x} }  \times  {2}^{ \sqrt{y} }  = 100. \\  \\  =  > \bf  {5}^{ \sqrt{x} }  \times  {2}^{ \sqrt{y} }  = 25 \times 4. \\  \\  \\  =  > \bf  { \cancel5}^{ \sqrt{x} }  \times  { \cancel2}^{ \sqrt{y} }  =  { \cancel5}^{2}  \times { \cancel2}^{2} . \\  \\  =  >  \sqrt{x}  \times  \sqrt{y}  = 2 \times 2.  \\  \\ =  >  {x}^{ \frac{1}{2} }  \times  {y}^{ \frac{1}{2} }  = 4. \\  \\  =  > {x}^{ \frac{1}{2} }  \times  {y}^{  \frac{1}{2} }  = \sqrt{4}  \times  \sqrt{4} . \\  \\  =  > {x}^{   \cancel\frac{1}{2} }  \times  {y}^{  \cancel\frac{1}{2} }  ={4}^{  \cancel\frac{1}{2} }  \times  {4}^{  \cancel\frac{1}{2} }  . \\  \\  =  > x \times y = 4 \times 4. \\  \\  \\  =  >  \therefore x = 4 \: and \: y = 4.  \: ans \checkmark \checkmark



▶ Verification :-

 \bf {5}^{ \sqrt{x} }  \times  {2}^{ \sqrt{y} } . \\  \\  =   {5}^{ \sqrt{4} }  \times  {2}^{ \sqrt{4} } . \\  \\  =  {5}^{2}  \times  {2}^{2} . \\  \\  = 25 \times 4. \\  \\  = 100.

Hence, it is solved.


THANKS


#BeBrainly.
Answered by Shubhendu8898
8

Giveen,

5^{\sqrt{x}}\times2^{\sqrt{y}}=100\\\;\\\text{Making square of both sides}\\\;\\(5^{\sqrt{x}}\times2^{\sqrt{y}})^2=100^2\\\;\\5^{x}}\times2^{y}}=(25\times4)^2\\\;\\5^{x}}\times2^{y}}=(5^2\times2^2)^2\\\;\\5^{x}}\times2^{y}}=5^4\times2^4\\\;\\\text{On Camparing}\\\;\\x=4\\\;\\y=4\\\;\\\\\;\\Note:\\\;\\(a^m)^n=(a^n)^m=a^{mn}

Similar questions