Solve it without spam
Attachments:
Answers
Answered by
2
Step-by-step explanation:
Given,
3 sinθ + 5cosθ = 5
Squaring on both sides.
(3 sinθ + 5cosθ)² = 5²
(3sinθ)² + (5cosθ)² + 2× 3sinθ 5cosθ = 25
------- [a+b= a²+b²+2ab]
9sin²θ + 25cos²θ + 30sinθcosθ = 25
9 (1-cos²θ) + 25(1-sin²θ) + 30sinθcosθ = 25
------[sin²θ + cos²θ =1]
9 - 9cos²θ + 25 - 25sin²θ + 30sinθcosθ = 25
9 + 25 - (9cos²θ + 25sin²θ - 30sinθcosθ) = 25
34 - (9cos²θ + 25sin²θ - 30sinθcosθ) = 25
- (25sin²θ + 9cos²θ - 30sinθcosθ) = 25 - 34
(25sin²θ + 9cos²θ - 30sinθcosθ) = 9
(5sinθ - 3cosθ)² = 9
(5sinθ - 3cosθ) = √9
(5sinθ - 3cosθ) = ±3
Hence, proved.
HOPE THIS ANSWER HELPS U...
Similar questions
English,
4 months ago
Social Sciences,
4 months ago
Math,
9 months ago
Math,
1 year ago
Chemistry,
1 year ago