Math, asked by sahap2156, 9 months ago

solve ittttt...........​

Attachments:

Answers

Answered by 12345678901234567q
3

Answer:

Step-by-step explanation:

Given in picture

Mark me as brainliest

Attachments:
Answered by Anonymous
8

\huge\underline\bold\blue{Given}

\bold{Vertices \: of \: triangle}

\bold{A(1,-1), \: C(0,4), \: B(-5,3)}

\huge\underline\bold\blue{To \: find}

\textbf{1) Length of Median of triangle}

\textbf{2) Check whether it is scalene,}\textbf{equilateral or isosceles triangle}

\large\bold\green{NOTE:-}

\textbf{Scalene triangle - All sides are different}

\textbf{Equilateral triangle - All sides are equal}

\textbf{Isosceles triangle - Two sides are equal}

\huge\underline\bold\blue{Formulae}

\bold{Distance \: Formula}

\sqrt{(x2-x1)^2+(y2-y1)^2}

\bold{Midpoint \: Formula}

\large\frac{x1+x2}{2}\frac{y1+y2}{2}

\huge\underline\bold\blue{Solution}

\large\bold\red{Distance \: of \: AC}

\bold{AC \: =}\sqrt{(x2-x1)^2+(y2-y1)^2}

\bold{AC \: =}\sqrt{(0-1)^2+(4+1)^2}

\bold{AC \: =}\sqrt{(-1)^2+(5)^2}

\bold{AC \: =}\sqrt{1+25}

\bold{AC \: =}\sqrt{26}\bold{unit}

\large\bold\red{Distance \: of \: BC}

\bold{BC \: =}\sqrt{(0+5)^2+(4-3)^2}

\bold{BC \: =}\sqrt{(5)^2+(1)^2}

\bold{BC \: =}\sqrt{25+1}

\bold{BC \: =}\sqrt{26} unit

\large\bold\red{Distance \: of \: AB}

\bold{AB \: =}\sqrt{(-5-1)^2+(3+1)^2}

\bold{AB \: =}\sqrt{(-6)^2+(4)^2}

\bold{AB \: =}\sqrt{36+16}

\bold{AB \: =}\sqrt{52}

\bold{AB \: =}{2}\sqrt{13}unit

\bold{AC=BC≠AB}

\textbf{So, it is an isosceles triangle}

\textbf{because it has two equal sides}

\large\bold\blue{According \: to \: midpoint  \: formula}

\large\bold\red{Coordinate \: of \: D}

\bold{(x,y)=} \large\frac{x1+x2}{2}{,}\large\frac{y1+y2}{2}

\bold{(x,y)=}\large\frac{1-5}{2}{,}\large\frac{-1+3}{2}

\bold{x \: =}\large\frac{1-5}{2}

\bold{x \: =}\large\frac{-4}{2}

\bold{x \: = \: -2}

________________________________

\bold{y \: =}\large\frac{-1+3}{2}

\bold{y \: =}\large\frac{2}{2}

\bold{y \: = \: 1}

\large\bold\red{So, \: coordinate \: of \: D \: (-2,1)}

\textbf{Now, length of median}

\textbf{Again using distance formula}

\large\bold\red{Distance \: of \: CD}

\bold{CD \: =}\sqrt{(-2-0)^2+(1-4)^2}

\bold{CD \: =}\sqrt{(-2)^2+(-3)^2}

\bold{CD \: =}\sqrt{4+9}

\bold{CD \: =}\sqrt{13} unit

Attachments:
Similar questions