Math, asked by 7537, 1 year ago

solve : (k+4)x2+(k+1)x +1=0 has equal roots . find the value of k.also find the roots

Answers

Answered by DhanyaDA
646
Hi friend!!

We know that, for a given equation ax²+bx+c=0 to have equal roots, the required condition is

b²-4ac=0

Given,

(k+4)x²+(k+1)x +1=0 has equal roots

→(k+1)²-4(k+4)=0

k²+1+2k-4k-16=0

k²-2k-15=0

k²-5k+3k-15=0

k(k-5)+3(k-5)=0

(k+3)(k-5)=0

k=-3,5

If k=-3
Now, the polynomial becomes

(k+4)x²+(k+1)x +1=0

(-3+4)x²+(-3+1)x+1=0

x²-2x+1=0

(x-1)²=0

x=1

If k=5

Now, the polynomial becomes
(k+4)x²+(k+1)x +1=0

9x²+6x+1=0

9x²+3x+3x+1=0

3x(3x+1)+1(3x+1)=0

(3x+1)²=0

3x+1=0

x=-1/3

Now, the roots are 1 (or)-1/3

I hope this will help you;)

7537: thank u soo much
abhi569: roots ??
abhi569: i can see
abhi569: (-:
7537: :)
Answered by abhi569
196

Discriminant = b^2 - 4ac 

Discriminant = (k+1)^2 - 4(1)(k+4)

= (k+1)^2 - 4(1)(k+4)                      = k^2 +1+2k -4k - 16                                   = k^2 - 2k - 15

For equal roots, discriminant = 0

→ k^2 - 2k - 15 = 0 

→ k^2 - 5k + 3k - 15 = 0 

→ k(k - 5) + 3(k - 5) = 0 

→ (k - 5)(k + 3) = 0 

→ k = 5 or k = -3 

k = 5 or k = - 3

=============================

Taking , k = 5 

→ (k + 4)x^2 + (k + 1)x + 1 = 0 

→ (5 + 4)x^2 + (5 + 1)x + 1 = 0 

→ 9x^2 + 6x + 1 =  0 

→ (3x + 1)^2 = 0 

x = -1/3   [root]

=======================

Taking x = -3

→ (-3+ 4)x^2 + (-3 + 1)x + 1 = 0 

→ (1)x^2 + (-2)x + 1 =0 

→ x^2 - 2x + 1 = 0  

→ (x -1)^2 = 0 

→ x= 1 

======================

Roots are 1 or -1/3 .


abhi569: welcome
7537: :)
abhi569: (-:
Similar questions