Math, asked by sonusharma45, 5 months ago

solve kar do plzzz mate ​

Attachments:

Answers

Answered by Anonymous
47

{\huge{\underbrace{\rm{Answer\checkmark}}}}

 \rm \longrightarrow \:  \sqrt{ \dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) } }  +  \sqrt{ \dfrac{1 -  \cos( \theta) }{1 +  \cos( \theta) } }

Rationalize the denominator ...

 \implies \rm \:  \sqrt{ \frac{(1 +  \cos( \theta) )(1 -  \cos( \theta) )}{(1 -  \cos( \theta) )(1 +  \cos( \theta)) } }  +  \sqrt{ \frac{(1 -  \cos( \theta))(1 -  \cos( \theta))  }{(1 +   \cos( \theta))(1 -  \cos( \theta))  } }

 \implies \rm \:  \dfrac{1 +  \cos( \theta) }{ \sqrt{1 -  { \cos }^{2}  \theta} }  +  \dfrac{1 -  \cos( \theta) }{ \sqrt{1 -  { \cos }^{2}  \theta} }

 \implies \rm \:  \dfrac{1 +  \cos( \theta) }{ \sqrt{ { \sin}^{2} \theta } }  +  \dfrac{1 -  \cos( \theta) }{ \sqrt{ { \sin }^{2} \theta } }

 \implies \rm \:  \dfrac{1 +  \cos( \theta) }{ \sin( \theta) }  +  \dfrac{1 -  \cos( \theta) }{  \sin( \theta) }

 \implies \rm \:  \dfrac{1 +  \cos( \theta)  + 1 -  \cos( \theta) }{ \sin( \theta) }

 \implies \rm \:  \dfrac{2}{ \sin( \theta) }

 \implies \rm \: 2 \sin( \theta)

 \therefore\:  \rm \: hence \: proved

_______________________________________

★ Formula Used -

  \mapsto \rm \:  (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \mapsto \rm \: 1 -  {cos}^{2}  \theta \:  =  \:  {sin}^{2}  \theta

_______________________________________

Similar questions