Math, asked by sonusharma45, 6 months ago

solve kar do yaar plzzz

tennetiraj bhaiya ​

Attachments:

Answers

Answered by Anonymous
56

{\huge{\underbrace{\rm{Answer\checkmark}}}}

★ First One -

 \rm \longrightarrow \:  \sqrt{ \dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) } }  +  \sqrt{ \dfrac{1 -  \cos( \theta) }{1 +  \cos( \theta) } }

Rationalize the denominator ...

 \implies \rm \:  \sqrt{ \frac{(1 +  \cos( \theta) )(1 -  \cos( \theta) )}{(1 -  \cos( \theta) )(1 +  \cos( \theta)) } }  +  \sqrt{ \frac{(1 -  \cos( \theta))(1 -  \cos( \theta))  }{(1 +   \cos( \theta))(1 -  \cos( \theta))  } }

 \implies \rm \:  \dfrac{1 +  \cos( \theta) }{ \sqrt{1 -  { \cos }^{2}  \theta} }  +  \dfrac{1 -  \cos( \theta) }{ \sqrt{1 -  { \cos }^{2}  \theta} }

 \implies \rm \:  \dfrac{1 +  \cos( \theta) }{ \sqrt{ { \sin}^{2} \theta } }  +  \dfrac{1 -  \cos( \theta) }{ \sqrt{ { \sin }^{2} \theta } }

 \implies \rm \:  \dfrac{1 +  \cos( \theta) }{ \sin( \theta) }  +  \dfrac{1 -  \cos( \theta) }{  \sin( \theta) }

 \implies \rm \:  \dfrac{1 +  \cos( \theta)  + 1 -  \cos( \theta) }{ \sin( \theta) }

 \implies \rm \:  \dfrac{2}{ \sin( \theta) }

 \implies \rm \: 2 \sin( \theta)

 \therefore\:  \rm \: hence \: proved

_______________________________________

★ Formula Used -

  \mapsto \rm \:  (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \mapsto \rm \: 1 -  {cos}^{2}  \theta \:  =  \:  {sin}^{2}  \theta

_______________________________________

★ Second One -

 \rm \: answer \: in \: attachment

★ Formula Used -

 \mapsto \rm \:   {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}  - xy)

 \mapsto \rm \:  {x}^{3}  -  {y}^{3} =  (x - y)( {x}^{2}  +  {y}^{2}  + xy)

 \mapsto \rm \:  {cos}^{2}  \theta +  {sin}^{2}  \theta = 1

_______________________________________

Thanks for points...xD

Attachments:
Answered by Anonymous
11

Answer:

★ First One :-

{1 + \cos( \theta) }{1 - \cos( \theta) } } + {1 - \cos( \theta) }{1 + \cos( \theta) } }⟶1−cos(θ)1+cos(θ)+1+cos(θ)1−cos(θ)

Rationalize the denominator ...

{(1 + \cos( \theta) )(1 - \cos( \theta) )}{(1 - \cos( \theta) )(1 + \cos( \theta)) } } + \sqrt{ \frac{(1 - \cos( \theta))(1 - \cos( \theta)) }{(1 + \cos( \theta))(1 - \cos( \theta)) } }⟹(1−cos(θ))(1+cos(θ))(1+cos(θ))(1−cos(θ))+(1+cos(θ))(1−cos(θ))(1−cos(θ))(1−cos(θ))

{1 + \cos( \theta) }{ \sqrt{1 - { \cos }^{2} \theta} } + \dfrac{1 - \cos( \theta) }{ \sqrt{1 - { \cos }^{2} \theta} }⟹1−cos2θ1+cos(θ)+1−cos2θ1−cos(θ)

{1 + \cos( \theta) }{ \sqrt{ { \sin}^{2} \theta } } + \dfrac{1 - \cos( \theta) }{ \sqrt{ { \sin }^{2} \theta } }⟹sin2θ1+cos(θ)+sin2θ1−cos(θ)

{1 + \cos( \theta) }{ \sin( \theta) } + {1 - \cos( \theta) }{ \sin( \theta) }⟹sin(θ)1+cos(θ)+sin(θ)1−cos(θ)

{1 + \cos( \theta) + 1 - \cos( \theta) }{ \sin( \theta) }⟹sin(θ)1+cos(θ)+1−cos(θ)

{2}{ \sin( \theta) }⟹sin(θ)2

2 \sin( \theta)⟹2sin(θ)

therefore,hence proved∴

♡_______________________________________♡

★ Formula Used :-

(x + y)(x - y) = {x}^{2} - {y}^{2}

↦(x+y)(x−y)=x2−y2

1 - {cos}^{2} theta = {sin}^{2} \theta

↦1−cos2θ=sin2θ

♡_______________________________________♡

★ Second One :-

Answer is in attachment.

★ Formula Used :-

{x}^{3} + {y}^{3} = (x + y)( {x}^{2} + {y}^{2} - xy)

↦x3+y3=(x+y)(x2+y2−xy)

{x}^{3} - {y}^{3} = (x - y)( {x}^{2} + {y}^{2} + xy)

↦x3−y3=(x−y)(x2+y2+xy)

{cos}^{2} \theta + {sin}^{2} \theta = 1

↦cos2θ+sin2θ=1

HOPE IT WILL HELP YOU..

Attachments:
Similar questions