solve kar do yaar plzzz
tennetiraj bhaiya
Answers
★ First One -
Rationalize the denominator ...
_______________________________________
★ Formula Used -
_______________________________________
★ Second One -
★ Formula Used -
_______________________________________
Thanks for points...xD
Answer:
★ First One :-
{1 + \cos( \theta) }{1 - \cos( \theta) } } + {1 - \cos( \theta) }{1 + \cos( \theta) } }⟶1−cos(θ)1+cos(θ)+1+cos(θ)1−cos(θ)
Rationalize the denominator ...
{(1 + \cos( \theta) )(1 - \cos( \theta) )}{(1 - \cos( \theta) )(1 + \cos( \theta)) } } + \sqrt{ \frac{(1 - \cos( \theta))(1 - \cos( \theta)) }{(1 + \cos( \theta))(1 - \cos( \theta)) } }⟹(1−cos(θ))(1+cos(θ))(1+cos(θ))(1−cos(θ))+(1+cos(θ))(1−cos(θ))(1−cos(θ))(1−cos(θ))
{1 + \cos( \theta) }{ \sqrt{1 - { \cos }^{2} \theta} } + \dfrac{1 - \cos( \theta) }{ \sqrt{1 - { \cos }^{2} \theta} }⟹1−cos2θ1+cos(θ)+1−cos2θ1−cos(θ)
{1 + \cos( \theta) }{ \sqrt{ { \sin}^{2} \theta } } + \dfrac{1 - \cos( \theta) }{ \sqrt{ { \sin }^{2} \theta } }⟹sin2θ1+cos(θ)+sin2θ1−cos(θ)
{1 + \cos( \theta) }{ \sin( \theta) } + {1 - \cos( \theta) }{ \sin( \theta) }⟹sin(θ)1+cos(θ)+sin(θ)1−cos(θ)
{1 + \cos( \theta) + 1 - \cos( \theta) }{ \sin( \theta) }⟹sin(θ)1+cos(θ)+1−cos(θ)
{2}{ \sin( \theta) }⟹sin(θ)2
2 \sin( \theta)⟹2sin(θ)
therefore,hence proved∴
♡_______________________________________♡
★ Formula Used :-
(x + y)(x - y) = {x}^{2} - {y}^{2}
↦(x+y)(x−y)=x2−y2
1 - {cos}^{2} theta = {sin}^{2} \theta
↦1−cos2θ=sin2θ
♡_______________________________________♡
★ Second One :-
Answer is in attachment.
★ Formula Used :-
{x}^{3} + {y}^{3} = (x + y)( {x}^{2} + {y}^{2} - xy)
↦x3+y3=(x+y)(x2+y2−xy)
{x}^{3} - {y}^{3} = (x - y)( {x}^{2} + {y}^{2} + xy)
↦x3−y3=(x−y)(x2+y2+xy)
{cos}^{2} \theta + {sin}^{2} \theta = 1
↦cos2θ+sin2θ=1