Solve karo bhai .... This is just taking time...
Answers
Answer:
Step-by-step explanation:
√1 - x² + √1 - y² = a(x - y); find dy/dx = ?
Let x = SinA & y = SinB
=> √1-(SinA)² +√1-(SinB)²=a(SinA-SinB)
=> √Cos²A + √Cos²B = a(SinA-SinB)
=> CosA + CosB = a(SinA - SinB)
=> 2Cos(A+B/2).Cos(A-B/2) = a . 2Cos(A+B/2)Sin(A-B/2)
=> Cos(A-B/2) = a . Sin(A-B/2)
=> Cot (A-B/2) = a
=> A - B/2 = Cot⁻¹ a
=> A - B = 2Cot⁻¹ a
//we have assumed that x = SinA => A = Sin⁻¹(x); y = SinB => B =Sin⁻¹(y)
=> Sin⁻¹(x) - Sin⁻¹(y) = 2Cot⁻¹a
//Now differentiate w.r.t x
=> d/dx(Sin⁻¹(x)) - d/dx(Sin⁻¹(y)) = d/dx(2Cot⁻¹a)
=> 1/√(1-x²) - 1/√(1-y²) . dy/dx = 0
=> 1/√(1-x²) = 1/√(1-y²) . dy/dx
=> dy/dx = √(1-y²)/√(1-x²)
= √[(1 - y²) / (1 - x²)]
1/√(1-y²) . dy/dx = 1/√(1-x²)
dy/dx = √(1-y²)/√(1-x²)
Read more on Brainly.in - https://brainly.in/question/10180081#readmore