Math, asked by harshad1305, 1 month ago

solve karo...
solution daalo
10 points kamao!!​

Attachments:

Answers

Answered by anindyaadhikari13
17

\texttt{\textsf{\large{\underline{Solution}:}}}

We have to find out the value of the fraction.

Let us assume that:

 \sf \implies x =2 +   \dfrac{1}{2 +  \dfrac{1}{2 +  \dfrac{1}{2 + ... \infty} } }

We can also write it as:

 \sf \implies x =2 + \dfrac{1}{x}

 \sf \implies x =\dfrac{2x + 1}{x}

 \sf \implies  {x}^{2}  =2x + 1

 \sf \implies  {x}^{2}  - 2x - 1 = 0

Comparing the given equation with ax² + bx + c = 0, we get:

 \sf \implies \begin{cases} \sf a =1 \\ \sf b =  - 2 \\ \sf c =  - 1 \end{cases}

By quadratic formula:

 \sf \implies x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

 \sf \implies x =  \dfrac{2 \pm \sqrt{ {( - 2)}^{2} - 4(1)( - 1)} }{2 \times 1}

 \sf \implies x =  \dfrac{2 \pm \sqrt{4 + 4} }{2 \times 1}

 \sf \implies x =  \dfrac{2 \pm \sqrt{8} }{2}

 \sf \implies x =  \dfrac{2 \pm2 \sqrt{2} }{2}

 \sf \implies x = 1 \pm\sqrt{2}

 \sf \implies x = \begin{cases} \sf 1  + \sqrt{2} \\ \sf 1 -  \sqrt{2}  \end{cases}

But x cannot be negative. Therefore:

 \sf \implies x = 1 + \sqrt{2}

So, the value of the fraction is 1 + √2.


anindyaadhikari13: Thanks for the brainliest :)
Similar questions