Math, asked by 9shivanis, 1 year ago

solve lim (tan2x-sin2x)/x to power3

Answers

Answered by taniya55555
103
I have done it in a copy.... Hope it will help you.......And sorry for bad handwriting!!
Attachments:
Answered by SerenaBochenek
54

Answer:

The value of \lim_{n \to 0}\frac{ (tan2x-sin2x)}{x^3} is 4

Step-by-step explanation:

Given\lim_{n \to 0}\frac{ (tan2x-sin2x)}{x^3}

we have to solve by applying limit

\lim_{n \to 0}\frac{ (tan2x-sin2x)}{x^3}=\lim_{n \to 0}\frac{ (\frac{sin2x}{cos2x}-sin2x)}{x^3}

                          = \lim_{n \to 0}\frac{ (sin2x-sin2x(cos2x))}{x^3(cos2x)}

                         = \lim_{n \to 0}\frac{sin2x(1-cos2x)}{x^3(cos2x)}

                        = \lim_{n \to 0}\frac{2sinx.cosx.2sin^{2}x}{x^3(cos2x)}

                        = 4( \lim_{n \to 0} \frac{sin^{3}x}{x^3}) (\lim_{n \to 0} \frac{cosx}{cos2x})

                        =  4( \lim_{n \to 0} (\frac{sin^x}{x}))^3 (\lim_{n \to 0} \frac{cosx}{cos2x})

                       = 4(1)^3(1)

Hence, the value of \lim_{n \to 0}\frac{ (tan2x-sin2x)}{x^3} is 4

Similar questions