Solve lim x-> 0 [ sinx/cosx]
Answers
Answered by
0
Step-by-step explanation:
alue of x\quad =\quad\frac { -19 }{ 3 }=
3
−19
Given:
\frac{(2 x + 1)}{(3 x - 2)}=\frac{5}{9}
(3x−2)
(2x+1)
=
9
5
To find:
Value of x
Solution:
\frac{(2 x + 1)}{(3 x - 2)}=\frac{5}{9}
(3x−2)
(2x+1)
=
9
5
Cross multiplying,
We get,
9(2 x + 1)\quad =\quad 5(3 x - 2)9(2x+1)=5(3x−2)
18x + 9 = 15x - 10
18x - 15x = -10 - 9
3x\quad =\quad -193x=−19
x\quad =\quad \frac { -19 }{ 3 }
Similar questions