Math, asked by mgupta9794, 3 months ago


solve
linear equations
RSAgarrwal​

Attachments:

Answers

Answered by itzPapaKaHelicopter
6

Answer:

 \textbf{Given:–}  \frac{x - 5}{2}  -  \frac{x - 3}{5}  =  \frac{1}{2}

\sf \colorbox{pink} {Solution:} \:  \frac{x - 5}{2}  -  \frac{x - 3}{5}  =  \frac{1}{2}

⇒ \frac{5(x - 5) - 2(x - 3)}{10}  =  \frac{1}{2}

⇒5x - 25 - 2x + 6 =  \frac{10}{2}

⇒3x - 19 = 5

⇒3x = 19 + 5

⇒3x = 24

⇒x =  \frac{24}{3}

⇒x = 8

 \\  \\  \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Answered by CuteAnswerer
12

GIVEN :

  • \bf {\dfrac{x - 5}{2} -  \dfrac{x - 3}{5} =  \dfrac{1}{2} }

TO FIND :

  • The value of x.

SOLUTION :

\implies{ \sf {\dfrac{x - 5}{2} -  \dfrac{x -  3}{5}   =  \dfrac{1}{2} }} \\  \\

\implies{\sf {\dfrac{5 \big(x - 5 \big) - 2 \big(x - 3 \big)}{10}   =  \dfrac{1}{2} }} \\  \\

\implies{\sf {\dfrac{5x - 25 - 2x  + 6 }{10}   =  \dfrac{1}{2} }} \\  \\

\implies{\sf {\dfrac{5x - 2x  + 6 - 25 }{10}   =  \dfrac{1}{2} }} \\  \\

\implies{\sf {\dfrac{3x   - 19 }{10}   =  \dfrac{1}{2} }} \\  \\

  • By cross multiplication :

\implies{  \sf{2 \big(3x - 19 \big) = 10 \times 1} } \\  \\

\implies{\sf{6x -38 = 10} } \\  \\

\implies{\sf{6x = 10 + 38} } \\  \\

\implies{ \sf{6x = 48} }  \\  \\

\implies{ \sf{x =   \cancel{\dfrac{48}{6}}} }  \\  \\

\implies{ \huge {\underline{\boxed { \red{\mathfrak{x =  8}}}}}}

\huge{\green{\therefore}} The value of x is 8.

VERIFICATION :

  • Substituting the value of x :

\implies{ \sf {\dfrac{8 - 5}{2} -  \dfrac{8 - 3}{5}   =  \dfrac{1}{2} }} \\  \\

\implies{ \sf {\dfrac{3}{2} -  \dfrac{5}{5}   =  \dfrac{1}{2} }} \\  \\

\implies{ \sf {\dfrac{15-10}{10}=  \dfrac{1}{2} }} \\  \\

\implies{ \sf {\cancel{\dfrac{5}{10}}=  \dfrac{1}{2} }} \\  \\

\implies{ \sf {\dfrac{1}{2} =  \dfrac{1}{2} }} \\  \\

\implies{ \huge {\underline{\boxed { \red{\mathfrak{LHS=RHS}}}}}}

\huge{\green{\therefore}} Verified.


MystícPhoeníx: Good ! Keep it Up !!
Similar questions