Math, asked by shriyansnayakhd12, 9 months ago

solve log_(3-4x^(2))(9-16x^(4))=2+(1)/(log _(2)(3-4x^(2)))​

Answers

Answered by MaheswariS
9

\textbf{Given:}

\log_{3-4\,x^2}(9-16\,x^4)=2+\dfrac{1}{\log_2(3-4\,x^2)}

\textbf{To find:}

\text{The value of x}

\textbf{Solution:}

\text{Consider,}

\log_{3-4\,x^2}(9-16\,x^4)=2+\dfrac{1}{\log_2(3-4\,x^2)}

\text{Using base changing formula,}

\log_{3-4\,x^2}(9-16\,x^4)=2+\log_{3-4\,x^2}2

\log_{3-4\,x^2}(9-16\,x^4)-\log_{3-4\,x^2}2=2

\text{Using quotient rule of logarithm,}

\log_{3-4\,x^2}(\frac{9-16\,x^4}{2})=2

\implies(3-4\,x^2)^2=\dfrac{9-16\,x^4}{2}

\implies\;9+16\,x^4-24\,x^2=\dfrac{9-16\,x^4}{2}

\implies\;2(9+16\,x^4-24\,x^2)=9-16\,x^4

\implies\;18+32\,x^4-48\,x^2=9-16\,x^4

\implies\;48\,x^4-48\,x^2+9=0

\implies\;16\,x^4-16\,x^2+3=0

\implies\;16\,x^4-12\,x^2-4\,x^2+3=0

\implies\;4x^2(4\,x^2-3)-1(4\,x^2-3)=0

\implies\;(4x^2-1)(4\,x^2-3)=0

\implies\;x^2=\dfrac{1}{4},\dfrac{3}{4}

\text{But $x^2=\dfrac{3}{4}$ does not satisfy the equation}

x^2=\dfrac{1}{4}

\implies\,x=\pm\dfrac{1}{2}

\textbf{Answer:}

\textbf{The values of x are $\bf\pm\dfrac{1}{2}$}

Find more:

Log2(5+log3a)=3 log5(4a+12+log2b)=3 then a+b equal to​

https://brainly.in/question/12950087

A) If x = log3/5, y = log5/4and z = 2log√3/2 , prove that 5^x+y-z= 1

​https://brainly.in/question/11454405

Answered by duttapoli33
2

Step-by-step explanation:

hipe it helps

Mark as brainliest.

Attachments:
Similar questions