Math, asked by naresh1396, 11 months ago

Solve log, x2–5x+14=3.​

Answers

Answered by mysticd
2

 log_{10} (x^{2} - 5x + 14 ) = 3

 \implies x^{2} - 5x + 14 = 10^{3}

 \boxed { \pink { If \: log_{a} x = N \implies  x = a^{N} ,\:x >0}}

 \implies x^{2} - 5x + 14 = 1000

 \implies x^{2} - 5x + 14 - 1000 = 0

 \implies x^{2} - 5x - 986 = 0

/* Splitting the middle term,we get */

 \implies x^{2} - 34x + 29x - 986 = 0

 \implies x( x - 34 ) + 29( x - 34 ) = 0

 \implies ( x - 34 )( x + 29 ) = 0

 \implies x - 34 = 0 \: Or \: x + 29 = 0

 \implies x = 34 \: Or \: x = -29

Therefore.,

 \red { Value \: of \: x } \green { = 34 }

•••♪

Similar questions