Math, asked by abhishekchaugai8728, 10 months ago

Solve Log4x + log4(x-6)=2

Answers

Answered by rohitbhhattach42
0

Step-by-step explanation:

log4x+log4(x-6)=2

place under single log using multiplication rule

log4(x(x-6))=2

convert to exponential form:(base(4) raised to log of number(2)=number(x(x-6)

4^2=x(x-6)

16=x^2-6x

x^2-6x-16=0

(x-8)(x+2)=0

x=8

or

x=-2 (reject, x>0)

HOPE IT HELPS ....!

Answered by BrainlyPopularman
6

GIVEN :

  \\  \:  \: { \huge{.}} \:  \: { \bold{ log_{4}(x)  +  log_{4}(x - 6) = 2 }} \:  \:  \\

TO FIND :

Value of 'x' = ?

SOLUTION :

  \\  \:  \implies \: { \bold{ log_{4}(x)  +  log_{4}(x - 6) = 2 }} \:  \:  \\

• Using property –

  \\  \:   \longrightarrow \: \large {  \boxed { \bold{ log_{e}(a)  +  log_{e}(b) =  log_{e}(a.b)  }}} \:  \:  \\

• So that –

  \\  \:  \implies \: { \bold{ log_{4}(x(x - 6) ) = 2 }} \:  \:  \\

  \\  \:  \implies \: { \bold{ log_{4}(x {}^{2}  - 6x) = 2 }} \:  \:  \\

• Using property –

  \\  \:   \longrightarrow \: \large  { \bold { if \:  \: log_{e}(a)  = b  \:  \: then \:  \: { \boxed{ \bold{ a =  {e}^{b}}}}  }} \:  \:  \\

• So that –

  \\  \:  \implies \: { \bold{ (x {}^{2}  - 6x) =  {(4)}^{2}  }} \:  \:  \\

  \\  \:  \implies \: { \bold{ (x {}^{2}  - 6x) =  16  }} \:  \:  \\

  \\  \:  \implies \: { \bold{ x {}^{2}  - 6x -   16  = 0 }} \:  \:  \\

  \\  \:  \implies \: { \bold{ x {}^{2}  - 8x  + 2x-   16  = 0 }} \:  \:  \\

  \\  \:  \implies \: { \bold{ x (x- 8)  + 2(x- 8)  = 0 }} \:  \:  \\

  \\  \:  \implies \: { \bold{ (x  + 2)(x- 8)   = 0 }} \:  \:  \\

  \\  \:  \implies \: \large { \boxed{ \bold{ x  =  - 2 \:  \:,  \:  \:  8}}} \:  \:  \\

• But x > 0 , So that –

  \\  \:  \longrightarrow \: \large { \boxed{ \bold{ x  =   8}}} \:  \:  \\

Similar questions