solve long division method 99999
Answers
Answered by
0
(10x)² + 2*(10x)*y + y² where y∈{0..9}
x²100 + 2*(10x)*y + y²
√999`99 => √999
(10u)² + 2*(10u)*v + v² where v∈{0..9}
u²100 + 2*(10u)*v + v²
√99`9 => u=3
99`9 - u²100 = 99`9 - 900 = 99 =2*(10u)*v + v² =(2*10u+v)v = (2*10*3+v)v = (60+v)v and v∈{0..9}
99 = (60+v)v
Hence
9`9 = (60+v)v => 9 div 6 =1
Let v=1
(60+1)*1=61 < 99 => 10u+v=31
Hence
√999`99
(10x)² + 2*(10x)*y + y² where y∈{0..9} and x=31
999`99 - (10x)² = 999`99 - 100*31² =999`99 - 96100=3899
Hence
3899 = 2*(10x)*y + y² = 2*(10*31)*y + y² = 620y + y²
389`9 = 620y + y² => 389 div 62 =6
Let y=6
2*(10x)*y + y² = 2*(10*31)*6 + 6²= 620*6 + 36 =3756 < 3899
Hence
10x+y=10*31+6=316
mark it as brainliest.!!
x²100 + 2*(10x)*y + y²
√999`99 => √999
(10u)² + 2*(10u)*v + v² where v∈{0..9}
u²100 + 2*(10u)*v + v²
√99`9 => u=3
99`9 - u²100 = 99`9 - 900 = 99 =2*(10u)*v + v² =(2*10u+v)v = (2*10*3+v)v = (60+v)v and v∈{0..9}
99 = (60+v)v
Hence
9`9 = (60+v)v => 9 div 6 =1
Let v=1
(60+1)*1=61 < 99 => 10u+v=31
Hence
√999`99
(10x)² + 2*(10x)*y + y² where y∈{0..9} and x=31
999`99 - (10x)² = 999`99 - 100*31² =999`99 - 96100=3899
Hence
3899 = 2*(10x)*y + y² = 2*(10*31)*y + y² = 620y + y²
389`9 = 620y + y² => 389 div 62 =6
Let y=6
2*(10x)*y + y² = 2*(10*31)*6 + 6²= 620*6 + 36 =3756 < 3899
Hence
10x+y=10*31+6=316
mark it as brainliest.!!
Similar questions