Solve my question mods
Answers
Answer:
Given,
- sin⁴x + cos⁴x = sin x.cos x ...(i)
We know that,
⇒ (sin²x + cos²x)² = sin⁴x + cos⁴x + 2.sin²x. cos²x
⇒ 1 = sin⁴x + cos⁴x + 2.sin²x. cos²x
⇒ 1 - 2.sin²x. cos²x = sin⁴x + cos⁴x ...(ii)
Substituting the LHS of (ii) in the LHS of (i) we get:
⇒ 1 - 2.sin²x. cos²x = sin x.cos x
⇒ 1 - 2.sin²x. cos²x - sin x.cos x = 0
Multiplying the whole equation by 2, we get:
⇒ 2 - 4.sin²x. cos²x - 2.sin x.cos x = 0
⇒ 2 - (2.sin x.cos x)² - 2.sin x.cos x = 0
We know that, 2.sin x.cos x = sin 2x. Hence substituting it, we get:
⇒ 2 - (sin 2x)² - sin 2x = 0
Let sin 2x = t. Hence we get:
⇒ 2 - t² - t = 0
⇒ t² + t - 2 = 0
⇒ t² + 2t - t - 2 = 0
⇒ t ( t + 2 ) - 1 ( t + 2 ) = 0
⇒ ( t + 2 ) ( t - 1 ) = 0
⇒ t = -2 and t = 1
Sin function cannot have a value of -2. Hence we consider only t = 1.
Substituting t back to sin 2x,
⇒ sin 2x = 1
We know that, sin takes the value of 1 at π/2, 5π/2, 7π/2, etc. Hence the general form is given as:
⇒ 2x = 2nπ + π/2
⇒ x = nπ + π/4
Hence Option (A) is the correct answer.
Given Trigonometric equation is
can be rewritten as
Multiply whole equation by 2, we get
We know,
So, using this identity, we get
can be rewritten as
- Hence, option (A) is correct.
Additional Information :-