Math, asked by shashank3554, 15 days ago

solve nC3 = n-1C2 + 84
Ch-Permutation and combination class 11 maths
Please don’t attempt the question if you don’t know the answer…

Answers

Answered by Anonymous
6

Step-by-step explanation:

 \implies ^nC_r =^{n-1}C_2+84

Apply formula ^nC_r =\dfrac{n!}{r!(n-r)!}

{ \implies \dfrac{n!}{3!(n-3)!} =\dfrac{(n-1)!}{2!(n-1-2)!} + 84  }

{ \implies \dfrac{n!}{3!(n-3)!}  - \dfrac{(n-1)!}{2!(n-1-2)!} = 84  }

We know that n! = n (n-1)!

 { \implies \dfrac{n(n - 1)!}{3!(n-3)!}  - \dfrac{(n-1)!}{2!(n-3)!} = 84  }

{ \implies \dfrac{(n - 1)!}{(n-3)!} .  \bigg( \dfrac{n}{3!}   - \dfrac{1}{2!}  \bigg)= 84  }

{ \implies \dfrac{(n - 1)!}{(n-3)!} .  \bigg( \dfrac{n}{3 \times 2 \times 1}   - \dfrac{1}{2 \times 1}  \bigg)= 84  }

{ \implies \dfrac{(n - 1)!}{(n-3)!} .  \bigg( \dfrac{n}{6}   - \dfrac{1}{2}  \bigg)= 84  }

{ \implies \dfrac{(n - 1)!}{(n-3)!} .  \bigg( \dfrac{n - 3}{6}  \bigg)= 84  }

We know that (n-1)! = (n-1) . (n-2) . (n-3)!

{ \implies \dfrac{(n - 1)(n - 2)(n - 3)!}{(n-3)!} .  \bigg( \dfrac{n - 3}{6}  \bigg)= 84  }

{ \implies \dfrac{(n - 1)(n - 2) \cancel{(n - 3)!}}{ \cancel{(n-3)!}} .  \bigg( \dfrac{n - 3}{6}  \bigg)= 84  }

{ \implies \dfrac{(n - 1)(n - 2)}{ 1} .  \bigg( \dfrac{n - 3}{6}  \bigg)= 84  }

{ \implies \dfrac{(n - 1)(n - 2)(n - 3)}{6} = 84  }

Now try to make LHS and RHS equal

{ \implies \dfrac{(n - 1)(n - 2)(n - 3)}{6} = 84  \times  \dfrac{6}{6}  }

{ \implies \dfrac{(n - 1)(n - 2)(n - 3)}{6} = \dfrac{504}{6}  }

{ \implies \dfrac{(n - 1)(n - 2)(n - 3)}{6} = \dfrac{9 \times 8 \times 7}{6}  }

{ \implies \dfrac{(n - 1)(n - 2)(n - 3)}{6} = \dfrac{(10 - 1)(10 - 2)(10 - 3)}{6}  }

{ \implies \dfrac{(n - 1)(n - 2)(n - 3)}{ \not6} = \dfrac{(10 - 1)(10 - 2)(10 - 3)}{ \not6}  }

{ \implies (n - 1)(n - 2)(n - 3) = (10 - 1)(10 - 2)(10 - 3)}

By comparing LHS and RHS, n = 10.

So the value of n is 10.

\rule{280}{1.7}

Remember that:

n! called n factorial is the expansion of n × (n-1) × (n-2) × (n-3) . . . 3 × 2 × 1

Similar questions