Math, asked by Anonymous, 1 year ago

Solve

❌No Spamming❌

❌No Copied Answers ❌​

Attachments:

Answers

Answered by Anonymous
8

hope this helps you.. :)

Attachments:

Anonymous: who r u
Anonymous: I couldn't follow what u r saying
Anonymous: u don't require it
Anonymous: sorry I don't tell
Anonymous: ok
Answered by soumya2301
7

\huge\underline\mathcal{Solution}

LHS:

 { \sec }^{2} theta - ( \frac{ { \sin}^{2}theta - 2 { \sin}^{4}theta }{2 { \cos }^{4} theta -  { \cos }^{2}theta } )

 =  \frac{1}{ { \cos }^{2} theta}  - \frac{1}{ { \cos }^{2} theta}( \frac{ { \sin }^{2}theta - 2 { \sin }^{4}theta }{2 { \cos }^{2} theta - 1} )

 = \frac{1}{ { \cos }^{2} theta}(1 -  \frac{( { \sin}^{2} theta - 2 { \sin }^{4} theta)}{2 {  \cos}^{2}theta - 1 } )

 = \frac{1}{ { \cos }^{2} theta}( \frac{2 { \cos }^{2} theta - 1 -  { \sin}^{2}theta + 2 { \sin}^{4}theta}{2 { \cos }^{2}theta - 1 } )

 = \frac{1}{ { \cos }^{2} theta}( \frac{2 { \cos }^{2}theta - ( { \sin}^{2}theta  +  { \cos}^{2}theta) -  { \sin}^{2}theta + 2 { \sin }^{4}theta   }{2 { \cos}^{2}theta - 1 } )

 = \frac{1}{ { \cos }^{2} theta}( \frac{ { \cos}^{2}theta -  { \sin }^{2}theta -  { \sin}^{2}theta  + 2 { \sin}^{4} theta  }{2 { \cos }^{2}theta - 1} )

 = \frac{1}{ { \cos }^{2} theta}( \frac{ { \cos }^{2}theta - 2 { \sin}^{2}theta + 2 { \sin }^{4}theta  }{2 { \cos}^{2}theta - 1 } )

 = \frac{1}{ { \cos }^{2} theta}( \frac{ { \cos }^{2}theta  - 2 { \sin }^{2}theta(1 -  { \sin }^{2}theta)  }{2 { \cos}^{2}theta - 1 } )

 = \frac{1}{ { \cos }^{2} theta} \times  \frac{( { \cos}^{2}theta - 2 { \sin }^{2}theta \:  { \cos }^{2}theta)}{2 { \cos }^{2}theta - 1 }

 =  \frac{ 1 - 2 { \sin }^{2}theta}{2 { \cos}^{2}theta }

 =   \frac{1 - 2(1 -  { \cos}^{2}theta )}{2 { \cos }^{2}theta - 1 }

 =  \frac{1 - 2 + 2 { \cos}^{2}theta }{2 { \cos }^{2}theta - 1 }

 = \frac { 2 { \cos }^{2}theta - 1}{2 { \cos}^{2}theta - 1 }

 = 1

= RHS

Hence proved

Similar questions