Math, asked by Sir100, 11 months ago

Solve only . 10 .a
(Trigonometric ratios of multiple angles)
#salute U if u solved

Attachments:

Answers

Answered by MaheswariS
0

\textbf{To prove:}

\dfrac{1-tan\,B}{1+tan\,B}=\dfrac{1-sin\,2B}{cos\,2B}

\textbf{Solution:}

\text{Consider,}

\dfrac{1-tan\,B}{1+tan\,B}

=\dfrac{1-\frac{sinB}{cosB}}{1+\frac{sinB}{cosB}}

=\dfrac{\frac{cosB-sinB}{cosB}}{\frac{cosB+sinB}{cosB}}

=\dfrac{cosB-sinB}{cosB+sinB}

\text{Multily both numerator and denominator by $cosB-sinB$,}

\text{we get}

=\dfrac{cosB-sinB}{cosB+sinB}{\times}\dfrac{cosB-sinB}{cosB-sinB}

=\dfrac{(cosB-sinB)^2}{cos^2B-sin^2B}

=\dfrac{cos^2B+sin^2B-2\,sinB\,cosB}{cos^2B-sin^2B}

\text{Using the following identities}

\boxed{\bf\,sin^2A+cos^2A=1}

\boxed{\bf\,sin2A=2\,sinA\,cosA}

\boxed{\bf\,cos2A=cos^2A-sin^2A}

\text{we get}

=\dfrac{1-sin\,2B}{cos\,2B}

\implies\boxed{\bf\dfrac{1-tan\,B}{1+tan\,B}=\dfrac{1-sin\,2B}{cos\,2B}}

Find more:

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Simplify (sin theta+cosec theta )^2+(cos theta+sec theta)^2-(tan theta+cot theta)^2

https://brainly.in/question/15010646

Similar questions