solve (ORDINARY DIFFERENTIAL)
dy/dx + y/x = y^2sinx
Answers
Answered by
0
Answer:
dy
+xy=y
2
e
2
x
2
.sinx⇒
y
2
1
dx
dy
+
y
x
=e
2
x
2
.sinx
Substitute −
y
1
=v⇒
y
2
1
dy=dv
∴
dx
dv
−vx=e
2
x
2
.sinx ...(1)
Here P=−x⇒∫Pdx=−∫xdx=
2
−x
2
∴I.F.=e
2
−x
2
Multiplying (1) by I.F. we get
e
2
−x
2
dx
dv
−vxe
2
−x
2
=sinx
Integrating both sides we get
e
2
−x
2
v=∫sinxdx+c=−cosx+c⇒e
2
−x
2
=y(c+cosx)
Step-by-step explanation:
hope it will help you
Similar questions