Math, asked by saha2001, 4 months ago

solve p(1+q^2)=q(z-a) using charpit's method​

Answers

Answered by aloksomadas
0

Answer:

good morning

Step-by-step explanation:

good morning

solve

solve

solve

Solution

Here, given equation is:

p(1+q^2)=q(z-a)\\ \therefore p+pq^2)=qz-qa\\ \implies p+pq^2-qz+qa=0---(1)p(1+q

2

)=q(z−a)

∴p+pq

2

)=qz−qa

⟹p+pq

2

−qz+qa=0−−−(1)

Therefore the Charpit's auxiliary equation is

\frac{dp}{\frac{df}{dx}+p\frac{df}{dz}}=\frac{dq}{\frac{df}{dy}+q\frac{df}{dz}}=\frac{dz}{-p\frac{df}{dp}-q\frac{df}{dq}}=\frac{dx}{-\frac{df}{dp}}=\frac{dy}{-\frac{df}{dq}}=\frac{dF}{0}

dx

df

+p

dz

df

dp

=

dy

df

+q

dz

df

dq

=

−p

dp

df

−q

dq

df

dz

=

dp

df

dx

=

dq

df

dy

=

0

dF

or

\frac{dp}{0+p(-q)}=\frac{dq}{0+q(-q)}=\frac{dz}{-p-pq^2}=\frac{dx}{-1-q^2}=\frac{dy}{-2pq-z}=\frac{dF}{0}

0+p(−q)

dp

=

0+q(−q)

dq

=

−p−pq

2

dz

=

−1−q

2

dx

=

−2pq−z

dy

=

0

dF

or

\frac{dp}{-pq}=\frac{dq}{-q^2}=\frac{dz}{-p-pq^2}=\frac{dx}{-1-q^2}=\frac{dy}{-2pq-z}=\frac{dF}{0}

−pq

dp

=

−q

2

dq

=

−p−pq

2

dz

=

−1−q

2

dx

=

−2pq−z

dy

=

0

dF

So that

\implies \frac{dp-dq}{-pq+q^2}=\frac{dy-dx}{-2pq-z+1+q^2}\\ \implies \frac{dp-dq}{-pq+q^2}=\frac{dy-dx}{-pq+q^2}\\ \implies dp-dq = dy-dx\\ \therefore dp+dx=dy+dq\\ ⟹

−pq+q

2

dp−dq

=

−2pq−z+1+q

2

dy−dx

−pq+q

2

dp−dq

=

−pq+q

2

dy−dx

⟹dp−dq=dy−dx

∴dp+dx=dy+dq

Integrating, we get

\implies p+x=y+q\\ \implies p=y-x+q\\⟹p+x=y+q

⟹p=y−x+q

From equation (1), we get

p+pq^2-qz+qa=0 \implies p=pq^2-qz+qa\\ q(pq-z-a)=p\\ q=p\ or\\ q=\frac{z-a}{p}p+pq

2

−qz+qa=0⟹p=pq

2

−qz+qa

q(pq−z−a)=p

q=p or

q=

p

z−a

Using the value pp and qq in dz=pdx+qdydz=pdx+qdy

\implies dz=(y-x+q)dx+(\frac{z-a}{p})dy\\ \implies \frac{dz}{z}=(y-x+q)dx+(\frac{z-a}{p})dy⟹dz=(y−x+q)dx+(

p

z−a

)dy

z

dz

=(y−x+q)dx+(

p

z−a

)dy

Integrating, we get

log\ z=yx+qx-\frac{x^2}{2}+\frac{y-ya}{py}log z=yx+qx−

2

x

2

+

py

y−ya

Similar questions