Math, asked by khushirana1723, 1 year ago

solve part 5 of this question ...​

Attachments:

Answers

Answered by Anonymous
11

Answer:

\large\bold\red{ln(4)ln(2)}

Step-by-step explanation:

Given,

(v)\lim_{x\to0} \frac{ {8}^{x}  -  {4}^{x}  -  {2}^{x} + 1 }{x \tan(x) }

We need to factorise the numerator here,

 = \lim_{x\to0} \frac{ {4}^{x} ( {2}^{x}  - 1) - 1( {2}^{x}  - 1)}{x \tan(x) }  \\  \\  = \lim_{x\to0} \frac{( {4}^{x} - 1)( {2}^{x}   - 1)}{x \tan(x) }  \\  \\  = \lim_{x\to0} \frac{( {4}^{x}  - 1)( {2}^{x}  - 1)}{ {x}^{2}   \times  \frac{ \tan(x) }{x} }  \\  \\  = \lim_{x\to0} \frac{( {4}^{x}  - 1)}{x}  \times \lim_{x\to0} \frac{( {2}^{x}  - 1)}{x}  \times  \frac{1}{\lim_{x\to0} \frac{ \tan(x) }{x}}

But,

we know that,

\lim_{x\to0} \frac{ {a}^{x}  - 1}{x}  =  ln(a)  \\  \\ and \\  \\ \lim_{x\to0} \frac{ \tan(x) }{x}  = 1

Therefore,

Applying these formulas,

we get,

 =  \bold{ ln(4)  ln(2) }

Similar questions