Math, asked by vikas123457, 10 months ago

solve please ................​

Attachments:

Answers

Answered by luckypriya077
1

Step-by-step explanation:

mark me as brainliest......

Refer the attachment....

Attachments:
Answered by Anonymous
24

\Large{\underline{\underline{\mathfrak{\green{\bf{Solution}}}}}}

\Large{\underline{\underline{\mathfrak{\pink{\bf{Given}}}}}}

  • Equation p(x) = 4x² - 5x - 1.
  • alpha and beta zeroes .

\Large{\underline{\underline{\mathfrak{\pink{\bf{Find}}}}}}

  • \sf{\:Value\:of\:(\alpha^2\beta+\alpha\beta^2)}

\Large{\underline{\underline{\mathfrak{\green{\bf{Explanation}}}}}}

We know,

\small{\sf{\green{\boxed{\boxed{\orange{\:Sum\:of\:zeroes\:=\:\dfrac{-(Coefficient\:ofx)}{(coefficient\:of\:x^2)}}}}}}}

\mapsto\sf{\:\alpha+\beta\:=\:\dfrac{-(-5)}{4}}

\mapsto\green{\sf{\:\alpha+\beta\:=\:\dfrac{5}{4}}}.......Equ(1)

______________________

Again,

\small{\sf{\green{\boxed{\boxed{\orange{\:Product\:of\:zeroes\:=\:\dfrac{(Constant\:part)}{(coefficient\:of\:x^2)}}}}}}}

\mapsto\green{\sf{\:\alpha\beta\:=\:\dfrac{(-1)}{4}}}........Equ(2)

__________________

\mapsto\red{\sf{\:(\alpha^2\beta+\alpha\beta^2)}}

\:\:\:\:\small\sf{\green{\:( Take\:\alpha\beta\:common )}}

\mapsto\sf{\:\alpha\beta(\alpha+\beta)}

\:\:\:\:\small\textsf{\green{\:( keep value by equ(1) and (2) )}}

\mapsto\sf{\:\dfrac{-1}{4}\times\left(\dfrac{5}{4}\right)}

\mapsto\orange{\sf{\:\dfrac{-5}{16}\:\:\:\:Ans}}

____________________

Similar questions