Math, asked by hayfordowajis, 1 month ago

solve please e^{2x-1} = 5​

Answers

Answered by varadad25
3

Answer:

\displaystyle{\boxed{\red{\sf\:x\:=\:\log_{e^2}\:(\:5e\:)}}}

Step-by-step-explanation:

The given equation is \displaystyle{\sf\:e^{2x\:-\:1}\:=\:5}

We have to find the value of x.

Now,

\displaystyle{\sf\:e^{2x\:-\:1}\:=\:5}

Taking log on both sides to the base e, we get,

\displaystyle{\sf\:\log_{e}\:(\:e^{2x\:-\:1}\:)\:=\:\log_{e}\:(\:5\:)}

\displaystyle{\implies\sf\:2x\:-\:1\:=\:\ln\:(\:5\:)\:\qquad\dots[\:\because\:\log_{a}\:(\:a^x\:)\:=\:x\:]}

\displaystyle{\implies\sf\:2x\:=\:\ln\:(\:5\:)\:+\:1}

\displaystyle{\implies\sf\:x\:=\:\dfrac{\ln\:(\:5\:)\:+\:1}{2}}

\displaystyle{\implies\sf\:x\:=\:\dfrac{\ln\:(\:5\:)\:+\:ln\:(\:e\:)}{\ln\:(\:e^2\:)}\:\qquad\dots[\:\because\:\log_{e}\:(\:e^2\:)\:=\:2\:]}

\displaystyle{\implies\sf\:x\:=\:\dfrac{\ln\:(\:5e\:)}{\ln\:(\:e^2\:)}\:\qquad\dots[\:\because\:\log_{a}\:(\:x\:)\:+\:\log_{a}\:(\:y\:)\:=\:\log_{a}\:(\:xy\:)\:]}

\displaystyle{\implies\sf\:x\:=\:\log_{e^2}\:(\:5e\:)\:\qquad\dots\:\left[\:\dfrac{\log_{a}\:(\:x\:)}{\log_{a}\:(\:y\:)}\:=\:\log_{y}\:(\:x\:)\:\right]}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x\:=\:\log_{e^2}\:(\:5e\:)}}}}

Answered by Renumahala2601
6

Answer:

\displaystyle{\boxed{\red{\sf\:x\:=\:\log_{e^2}\:(\:5e\:)}}} </p><p>

Step-by-step-explanation:

The given equation is

 \displaystyle{\sf\:e^{2x\:-\:1}\:=\:5}e </h3><h3>2x−1</h3><h3> =5

We have to find the value of x.

Now,

</p><p>\displaystyle{\sf\:e^{2x\:-\:1}\:=\:5}e </p><p>2x−1</p><p> =5

Taking log on both sides to the base e, we get,

</p><p>\displaystyle{\sf\:\log_{e}\:(\:e^{2x\:-\:1}\:)\:=\:\log_{e}\:(\:5\:)}log </p><p>e</p><p></p><p> (e </p><p>2x−1</p><p> )=log </p><p>e</p><p></p><p> (5)

\displaystyle{\implies\sf\:2x\:-\:1\:=\:\ln\:(\:5\:)\:\qquad\dots[\:\because\:\log_{a}\:(\:a^x\:)\:=\:x\:]}⟹2x−1=ln(5)…[∵log </p><p>a</p><p></p><p> (a </p><p>x</p><p> )=x]</p><p>

\displaystyle{\implies\sf\:2x\:=\:\ln\:(\:5\:)\:+\:1}⟹2x=ln(5)+1</p><p></p><p>\displaystyle{\implies\sf\:x\:=\:\dfrac{\ln\:(\:5\:)\:+\:1}{2}}⟹x= </p><p>2</p><p>ln(5)+1</p><p></p><p> </p><p></p><p>\displaystyle{\implies\sf\:x\:=\:\dfrac{\ln\:(\:5\:)\:+\:ln\:(\:e\:)}{\ln\:(\:e^2\:)}\:\qquad\dots[\:\because\:\log_{e}\:(\:e^2\:)\:=\:2\:]}⟹x= </p><p>ln(e </p><p>2</p><p> )</p><p>ln(5)+ln(e)</p><p></p><p> …[∵log </p><p>e</p><p></p><p> (e </p><p>2</p><p> )=2]</p><p></p><p>\displaystyle{\implies\sf\:x\:=\:\dfrac{\ln\:(\:5e\:)}{\ln\:(\:e^2\:)}\:\qquad\dots[\:\because\:\log_{a}\:(\:x\:)\:+\:\log_{a}\:(\:y\:)\:=\:\log_{a}\:(\:xy\:)\:]}⟹x= </p><p>ln(e </p><p>2</p><p> )</p><p>ln(5e)</p><p></p><p> …[∵log </p><p>a</p><p></p><p> (x)+log </p><p>a</p><p></p><p> (y)=log </p><p>a</p><p></p><p> (xy)]</p><p></p><p>\displaystyle{\implies\sf\:x\:=\:\log_{e^2}\:(\:5e\:)\:\qquad\dots\:\left[\:\dfrac{\log_{a}\:(\:x\:)}{\log_{a}\:(\:y\:)}\:=\:\log_{y}\:(\:x\:)\:\right]}⟹x=log </p><p>e </p><p>2</p><p> </p><p></p><p> (5e)…[ </p><p>log </p><p>a</p><p></p><p> (y)</p><p>log </p><p>a</p><p></p><p> (x)</p><p></p><p> =log </p><p>y</p><p></p><p> (x)]</p><p></p><p>\displaystyle{\implies\underline{\boxed{\red{\sf\:x\:=\:\log_{e^2}\:(\:5e\:)}}}}⟹ </p><p>x=log </p><p>e </p><p>2</p><p> </p><p></p><p> (5e)</p><p></p><p> </p><p>

Similar questions