Math, asked by rajababudas2006, 1 month ago

solve please find write down​

Attachments:

Answers

Answered by pinakiparbatihembram
1

Step-by-step explanation:

In fig.(i)

AOB is a straight line.

angle AOC and angle BOC are linear pairs on the same line.

SO AOC + BOC = 180°

= 62° + X = 180°

= x = 180° - 62°

= x = 118°

Hance, angle BOC = X = 118°

In fig.(ii)

Given, AOC = (3x-5)°

COD = 55°

BOD = (x+20)°

AOC + COD + BOD = 180°. [ angle AOC , COD and BOD form a linear pair on the same line]

= (3x+5)° + 55° + (x+20)°= 180°

= 3x+ 5 + 55 +x + 20 = 180°

= 3x+x +55+20+5 = 180°

= 4x + 80 = 180°

= 4x = 180- 80

= 4x = 100

= x = 100/4

= x = 25

Therefore,

angle AOC = (3x+5)° = (3×25+5)°= 80°

angle BOD = (x+20)° = (25+20)° = 45°

angle COD = 55°

In fig.(iii)

Given, AOC = (3x+7)°

COD = (2x-19)°

BOD = x°

AOC+COD+BOD = 180°

= (3x+ 7 + 2x-19 + x = 180°

= 3x+x+2x+7-19 = 180°

= 6x - 12 = 180°

= 6x = 180+ 12

= x = 192/6

= x = 32

Therefore,

AOC=(3x+7)° = (3×32+7)°= 103°

COD=(2x-19)°= (2×32-19)°= 45°

BOD=X° = 32°

In fig.(v)

GIVEN, AOC= (3x+20)°

BOC= (4x-36)°

AOC + BOC = 180°. [ they form linear pairs on the same line]

= 3x+20 + 4x-36 = 180°

= 3x+4x+20-36 = 180°

= 7x-16= 180°

= 7x = 180°+16

= x = 196/7

= x = 28

Therefore,

AOC= (3x+20)°= (3×28+20)°= 104°

BOC = (4x-36)°= (4×28-36)°=76°

In fig.(iii)

I don't know if x=y=z then

XOP + POQ + YOQ = 180°

x+y+z = 180° [They form a linear pairs on the same line]

= x+x+x = 180° [x=y=z]

= 3x = 180°

= x = 180°/3

= x = 60°

Therefore, x=y=z=60°

Similar questions