Math, asked by monjyotiboro, 2 months ago

Solve!!

please give a detailed solution! ​

Attachments:

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Let assume that the line makes an angle α, β, γ with the respective x, y and z axis respectively.

According to statement,

It is given that

\rm :\longmapsto\:  \gamma   = 60 \degree

and

\rm :\longmapsto\:cos \beta  \: :  \: cos \alpha  =  \sqrt{3}  \: :  \: 1

So,

\rm :\longmapsto\:cos \beta  =  \sqrt{3}k

and

\rm :\longmapsto\:cos \alpha  = k

We know that,

\rm :\longmapsto\: {cos}^{2} \alpha  +  {cos}^{2}  \beta  +  {cos}^{2}  \gamma = 1

\rm :\longmapsto\: {k}^{2}  + 3 {k}^{2}  +  {\bigg(\dfrac{1}{2} \bigg) }^{2}  = 1

\rm :\longmapsto\:4{k}^{2}  = 1 - \dfrac{1}{4}

\rm :\longmapsto\:4{k}^{2}  = \dfrac{4 - 1}{4}

\rm :\longmapsto\:4{k}^{2}  = \dfrac{3}{4}

\rm :\longmapsto\:{k}^{2}  = \dfrac{3}{16}

\rm :\longmapsto\:{k} \:  = \:  \pm \:  \dfrac{ \sqrt{3} }{4}

So, we get 2 cases arises for the position of the line.

Case :- 1 When

\rm :\longmapsto\:{k} \:  =  \:  \dfrac{ \sqrt{3} }{4}

So,

\rm :\longmapsto\:cos \alpha  = \dfrac{ \sqrt{3} }{4}

\rm :\longmapsto\:cos \beta  =  \dfrac{3}{4}

\rm :\longmapsto\:cos  \gamma   =  \dfrac{1}{2}

So, Direction cosines of the line is

\rm :\longmapsto\:\bigg(\dfrac{ \sqrt{3} }{4}, \: \dfrac{3}{4}, \: \dfrac{1}{2}  \bigg)

Case :- 2 When

\rm :\longmapsto\:{k} \:  =  \:  -  \:  \dfrac{ \sqrt{3} }{4}

So,

\rm :\longmapsto\:cos \alpha  = -  \dfrac{ \sqrt{3} }{4}

\rm :\longmapsto\:cos \beta  =  -  \:  \dfrac{3}{4}

\rm :\longmapsto\:cos  \gamma   =  \dfrac{1}{2}

So, Direction cosines of line is

\rm :\longmapsto\:\bigg(\dfrac{  -  \: \sqrt{3} }{4}, \:  -  \: \dfrac{3}{4}, \: \dfrac{1}{2}  \bigg)

Now,

Let suppose that the angle between the two position of lines be 'p'.

So, we have Direction cosines of lines in two different positions as

\rm :\longmapsto\:\bigg(\dfrac{   \: \sqrt{3} }{4}, \: \: \dfrac{3}{4}, \: \dfrac{1}{2}  \bigg)

and

\rm :\longmapsto\:\bigg(\dfrac{  -  \: \sqrt{3} }{4}, \:  -  \: \dfrac{3}{4}, \: \dfrac{1}{2}  \bigg)

Thus,

Angle between the lines is

\rm :\longmapsto\:cosp \:  =  |\dfrac{ -  \sqrt{3} }{4}  \times \dfrac{ \sqrt{3} }{4}  + \dfrac{ - 3}{4}  \times \dfrac{3}{4}  + \dfrac{1}{2}  \times \dfrac{1}{2} |

\rm \:  =  \:  | - \dfrac{3}{16}  - \dfrac{9}{16}  + \dfrac{1}{4} |

\rm \:  =  \:  | - \dfrac{3}{16}  - \dfrac{9}{16}  + \dfrac{4}{16} |

\rm \:  =  \:  | - \dfrac{8}{16} |

\rm \:  =  \:  | - \dfrac{1}{2} |

\rm \:  =  \: \dfrac{1}{2}

\bf\implies \:p \:  =  \: 60 \degree

Similar questions