Math, asked by ritikrathee111995, 1 year ago

solve please in detail and forward me please​

Attachments:

Answers

Answered by wwwshailjagenie
1

Step-by-step explanation:

Answer is in the pic.

hope it will help you !

Attachments:
Answered by Sharad001
80

❏ QuesTion :-

Solve this differential equation

 \implies \sf  \frac{dy}{dx}  +  \frac{y}{x log(x) }  =  \frac{ \sin2x}{ log(x) }  \\

❏ Answer :-

\boxed{\to \orange{ \sf y \:  log(x)  = } \sf \frac{ -\cos2x}{2}  + c} \:

✦SoluTion :-

• Used Concept :-

We have a linear differential equation .

Process to solve -

we have a standard linear equation

 \to  \sf \large \orange{  \frac{dy}{dx} } +  \red{p \: y = q}  \\

Here P and q are the functions of "x",

Here we defined a term called " Integrating factor (i.f) .

 \to \:  \sf \large \green{ \:  i.f =  {e}^{ \int p \: dx} } \\ \\ \bf After \: this \\ \\ \sf \red{y (i.f) = \int (i.f)\:  q \: dx }

✦ExplanaTion :-

According to the given concept we have

 \to \sf \: p =  \frac{1}{x log(x) } \\  \\  \to \sf \: integrating factor(i.f) =  {e}^{ \int p \: dx}  \\  \\  \to \sf \: i.f =  {e}^{ \int  \frac{1}{x log(x) } \: dx }  \\  \\  \to \sf put \:  \log x \:  = t \\  \\ \sf differentiate \: with \: respect \: to \: x \\  \\  \to \sf \: \frac{1}{x}  \: dx = dt \\  \\  \red{ \bf \: now \: we \: have \: } \\  \\  \to \sf i.f =  {e}^{ \int \:  \frac{1}{t} \: dt }  \\  \\  \to \sf \:  i.f =  {e}^{ log( log(x) ) }  \\  \\ \sf   \to \boxed{ \sf i.f =  log(x)  \: } \\  \\

Now according to the given concept -

 \to \sf \:   \red{y \: (i.f) }= \green{  \int \: (i.f) \: q \: dx} \\  \\  \to \sf y \:   log(x)  = \purple{  \int  log(x)   \times  \frac{ \sin2x}{ log(x) }  \: dx} \\  \\  \to \red{ \sf y \:  log(x) } =  \blue{ \int  \sin2x \: dx} \\  \\   \boxed{\to \orange{ \sf y \:  log(x)  = } \sf \frac{ -\cos2x}{2}  + c}

•••••••••••••••••°°°°°°°°°°°°°°°°••••••••••••••••

Hope it helps you .

Similar questions