Math, asked by kesarwanit4, 19 hours ago

solve please it is important​

Attachments:

Answers

Answered by samaira173
0

Step-by-step explanation:

cot30=root3

tan60=root3

sin60=root3/2

LHS-(root3+1 )* (3-root 3)

=(root3+1)*[root 3 *(root3 -1]

=(root3+1)(root3 -1)*root 3

=[(root3)^2 -1^2 ]*root 3

=(3-1)*root 3

=2root3

RHS-tan^3(60) -2(sin60)

=(root3)^3-2(root3/2)

=3(root3)-root3

=2root3

As LHS=RHS, hence proved.

Answered by krishpmlak
0

Answer:

Step-by-step explanation:

L.H.S. = ( √3 + 1 ) ( 3 - cot 30° )

= ( √3 + 1 ) ( 3 - √3 )

= 3√3 - ( √3 )² + 3 - √3

= 3√3 - 3 + 3 - √3

= 2√3

R.H.S. = tan³ 60° - 2 sin 60°

= ( √3 )³ - ( 2 × √3/2 )

= 3√3 - √3 (∵(√3)³ = (√3)² × √3 = 3 × √3 = 3√3 )

= 2√3

∴ L.H.S. = R.H.S.

Hence it is proved.

Similar questions