solve please it is important
Attachments:
Answers
Answered by
0
Step-by-step explanation:
cot30=root3
tan60=root3
sin60=root3/2
LHS-(root3+1 )* (3-root 3)
=(root3+1)*[root 3 *(root3 -1]
=(root3+1)(root3 -1)*root 3
=[(root3)^2 -1^2 ]*root 3
=(3-1)*root 3
=2root3
RHS-tan^3(60) -2(sin60)
=(root3)^3-2(root3/2)
=3(root3)-root3
=2root3
As LHS=RHS, hence proved.
Answered by
0
Answer:
Step-by-step explanation:
L.H.S. = ( √3 + 1 ) ( 3 - cot 30° )
= ( √3 + 1 ) ( 3 - √3 )
= 3√3 - ( √3 )² + 3 - √3
= 3√3 - 3 + 3 - √3
= 2√3
R.H.S. = tan³ 60° - 2 sin 60°
= ( √3 )³ - ( 2 × √3/2 )
= 3√3 - √3 (∵(√3)³ = (√3)² × √3 = 3 × √3 = 3√3 )
= 2√3
∴ L.H.S. = R.H.S.
Hence it is proved.
Similar questions