solve please let me know
Answers
Given :
- AB = BD
- DC = AD
- Angle ACD = 40°
To find :
Angle ABC
Solution :
In ∆ADC , AD = DC
therefore ∆ADC is isosceles triangle with
➝ angle(DAC) = angle(ACD)
➝ angle(DAC) = 40°
- Also, angle(ADB) is exterior angle of ∆ADC,
{ By property➝ exterior angle = Sum of opposite interior angle }
➝ angle(ADB) = angle(DAC) + angle(ACD)
➝ angle(ADB) = 40° + 40°
➝ angle(ADB) = 80°
_______________________________________________
In ∆ABD , AB = BD
therefore, ∆ABD is isosceles triangle,with
➝ angle(ADB) = angle(BAD)
➝ angle(BAD) = 80°
Now , we know that sum of interior angle of triangle = 180°
➝ angle(ADB) + angle(BAD) + angle(ABD) = 180°
➝ 80° + 80° + angle(ABD) = 180°
➝ angle(ABD) = 180° - 160°
➝ angle(ABD) = 20°
_______________________________________________
As , shown in image BC is extension of line BD to a point C
therefore,
angle(ABC) = angle(ABD)
angle(ABC) = 20°
ANSWER :
angle(ABC) = 20°
The answer is 20°.
Hope this helps