Math, asked by jiya1210, 11 months ago

solve please tell me the end step clearly 2x^2-2√2x+1

Answers

Answered by ItzAditt007
3

ANSWER:-

Given quadratic polynomial:-

\tt\leadsto2 {x}^{2}  - 2 \sqrt{2} x + 1

To Find:-

  • The zeroes of given polynomial.

So,

Let us find out the zeroes by factorization and middle term splitting method.

Therefore, here:-

\tt\mapsto \: coefficient \: of \:  {x}^{2}  \times constant \: term. \\  \\ \tt = 2 \times 1 = 2. \\  \\ \tt \: and \\  \\ \tt\mapsto2 =  \sqrt{2}  \times  \sqrt{2}  \\  \\ also \\  \\ \tt\mapsto \sqrt{2}  +  \sqrt{2}  = 2 \sqrt{2}  = middle \: term.

So, lets split middle term:-

Also we are finding the zeroes so the polynomial should be equal to zero.

\tt\mapsto2 {x}^{2}   - ( \sqrt{2}  +  \sqrt{2} ) x+  1 = 0\\  \\  \tt\mapsto2 {x}^{2}  -  \sqrt{2} x -  \sqrt{2}x + 1 = 0 \\  \\   \tt\mapsto \sqrt{2} x( \sqrt{2}x - 1)   - 1( \sqrt{2}x  - 1) = 0 \\  \\ \tt\mapsto ( \sqrt{2} x -1 )( \sqrt{2} x - 1)  = 0\\  \\ \tt\mapsto \sqrt{2}x - 1 = 0  \\  \\ \tt\mapsto \sqrt{2}x = 1 \\  \\ \tt\mapsto( \sqrt{2}x) {}^{2}  = (1) {}^{2}  \\  \\  \sf(squaring \: both \: sides) \\  \\ \tt\mapsto2 {x}^{2}  = 1 \\  \\ \tt\mapsto {x}^{2}  =  \frac{1}{2}  \\  \\ \tt\mapsto \: x =   \frac{ + }{} \sqrt{ \frac{1}{2} }  \\  \\ \tt\mapsto \: either \: x =  \sqrt{  \frac{1}{2} }  \:  \: or \:  \: x =  -\sqrt{ \frac{  1}{2} }

\therefore The required roots are \sqrt{\frac{1}{2}} And -\sqrt{\frac{1}{2}}.

Similar questions