solve please ..
thanks |||◆●◆●◆●◆●◆●◆●◆
Attachments:
Answers
Answered by
6
4^-x+0.5-7.2^-x<4
=>4^-x×4^0.5-7.2^-x<4
=>2×4^-x-7 2^-x<4
=>2×4^-x-(1.8^-x×4^-x)<4
=>2×4^-2x-1.8^-x<4
let 1.8nearly equal to 2
=>2×2^2(-2x)-2^-x<2^2
=>2^(1-4x)-2^-x<2^2
=>2^(1-4x+x)<2^2
=>1-3x<2
=>-3x<1
=>x<-1/3
hence x belongs to (-infinity , -1/3)
=>4^-x×4^0.5-7.2^-x<4
=>2×4^-x-7 2^-x<4
=>2×4^-x-(1.8^-x×4^-x)<4
=>2×4^-2x-1.8^-x<4
let 1.8nearly equal to 2
=>2×2^2(-2x)-2^-x<2^2
=>2^(1-4x)-2^-x<2^2
=>2^(1-4x+x)<2^2
=>1-3x<2
=>-3x<1
=>x<-1/3
hence x belongs to (-infinity , -1/3)
DebashishJoshi:
ok then try to prove in equations
Answered by
0
HEY MATE HERE IS YOUR ANSWER
➡️4^-x + o. 5 - 7.2^-x <4
➡️ 4^-x - × 4^0.5 - 7.2^-x <4
➡️ 2 × 4^-x - 7 2^-x<4
➡️ 2 × 4 ^-x-(1.8 ^-x× 4^-x) <4
➡️ 2 × 4^-2x-1.8^-x<4
Let 1.8 nearly equal to 2.
➡️ 2× 2^2(-2x)-2^-x<2^2
➡️ 2^(1-4x)-2^-x<2^2
➡️ 2^(1-4x+x)<2^2
➡️ 1+3x<2
➡️ - 3x<2
➡️ x = <-1/3
HENCE, x belong to infinity <1/3.
Hope it will help you
@thanksforquestion
@bebrainly
➡️4^-x + o. 5 - 7.2^-x <4
➡️ 4^-x - × 4^0.5 - 7.2^-x <4
➡️ 2 × 4^-x - 7 2^-x<4
➡️ 2 × 4 ^-x-(1.8 ^-x× 4^-x) <4
➡️ 2 × 4^-2x-1.8^-x<4
Let 1.8 nearly equal to 2.
➡️ 2× 2^2(-2x)-2^-x<2^2
➡️ 2^(1-4x)-2^-x<2^2
➡️ 2^(1-4x+x)<2^2
➡️ 1+3x<2
➡️ - 3x<2
➡️ x = <-1/3
HENCE, x belong to infinity <1/3.
Hope it will help you
@thanksforquestion
@bebrainly
Similar questions