Math, asked by vernacular, 1 year ago

solve please urgent need ​

Attachments:

Answers

Answered by Anonymous
4

GOOD \:  \: MORNING \:  \\  \\ 4 {}^{(x + 1)}  + 4 {}^{(1 - x)}  = 10 \\  \\ 4 {}^{x}  \times 4 + 4 {}^{}  \times 4 {}^{( - x)}  = 10 \\  \\ let \:  \: 4 {}^{x}  = z \\  \\ 4z {}^{2}  + 4 = 10z \\  \\ 4z {}^{2}  - 10z + 4 = 0 \\  \\ 2z {}^{2}  - 5z + 2 = 0 \\  \\ 2z {}^{2}  - 4z - 1z  + 2 = 0 \\  \\ 2z(z -2 ) - 1(z - 2) = 0 \\  \\ (2z - 1) = 0 \:  \:  \:  \: or \:  \:  \:  \: (z - 2) = 0 \\  \\ z = 1 \div 2 \:  \:  \:  \: or \:  \:  \: z = 2 \\  \\ 4 {}^{x}  = 2 {}^{ - 1}  \:  \:  \: or \:  \:  \: 4 {}^{x}  = 2 {}^{1}  \\  \\ 2 {}^{2x}  = 2 {}^{ - 1}  \:  \:  \: or \:  \:  \: 2 {}^{2x}  = 2 {}^{1}  \\  \\ now \: compare \:  \: powers \: of \: 2 \: we \: have \\  \\ 2x =  - 1 \:  \:  \: or \:  \:  \: 2x = 1 \\  \\ x =  - 1 \div 2 \:  \:  \: or \:  \:  \: x = 1 \div 2 \\  \\ therefore \:  \:  \: x =  - 1 \div 2 \:  \:  \:  \: or \:  \:  \:  \: x = 1 \div 2

Similar questions