Math, asked by kirti150, 1 month ago

Solve please urgently needed​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given determinant is TO PROVE

\rm \:  \begin{gathered}\sf \left | \begin{array}{ccc}y + z&x + y&x\\z + x&y + z& y\\x + y& z + x& z\end{array}\right | \end{gathered} =  {x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz

Consider LHS

\rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}y + z&x + y&x\\z + x&y + z& y\\x + y& z + x& z\end{array}\right | \end{gathered}

\boxed{ \rm{ OP \: R_1 \:  \longmapsto  \: R_1 + R_2 + R_3}}

\rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}2(x + y + z)&2(x + y + z)&x + y + z\\z + x&y + z& y\\x + y& z + x& z\end{array}\right | \end{gathered}

Take out x + y + z common from Row 1, we get

\rm \:  =  \:  (x + y + z)\begin{gathered}\sf \left | \begin{array}{ccc}2&2&1\\z + x&y + z& y\\x + y& z + x& z\end{array}\right | \end{gathered}

\boxed{ \rm{ OP \: C_1 \:  \longmapsto  \: C_1 - 2C_3}}

\rm \:  =  \:  (x + y + z)\begin{gathered}\sf \left | \begin{array}{ccc}0&2&1\\z + x - 2y&y + z& y\\x + y - 2z& z + x& z\end{array}\right | \end{gathered}

\boxed{ \rm{ OP \: C_2 \:  \longmapsto  \: C_2 - 2C_3}}

\rm \:  =  \:  (x + y + z)\begin{gathered}\sf \left | \begin{array}{ccc}0&0&1\\z + x - 2y&z - y& y\\x + y - 2z& x - z& z\end{array}\right | \end{gathered}

On expanding along Row 1, we get

\rm \:  =  \: (x + y + z)\bigg((z + x - 2y)(x - z) - (x + y - 2z)(z - y)\bigg)

\rm \:=(x + y + z)\bigg( {x}^{2} -  {z}^{2} - 2xy + 2yz - xz + xy - yz +  {y}^{2} +  {2z}^{2} - 2yz\bigg)

\rm \:=(x + y + z)\bigg( {x}^{2} +  {y}^{2} +  {z}^{2} - xy - yz - zx \bigg)

\rm \:  =  \:  \:  {x}^{3} +  {y}^{3} +  {z}^{3}  - 3xyz

Hence,

\rm \:  \begin{gathered}\sf \left | \begin{array}{ccc}y + z&x + y&x\\z + x&y + z& y\\x + y& z + x& z\end{array}\right | \end{gathered} =  {x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz

Additional Information :-

1. The determinant value remains unaltered if rows and columns are interchanged.

2. The determinant value is 0, if two rows or columns are identical.

3. The determinant value is multiplied by - 1, if successive rows or columns are interchanged.

4. The determinant value remains unaltered if rows or columns are added or subtracted.

Answered by TrustedAnswerer19
66

Answer:

see the attachment please.

Attachments:
Similar questions