Math, asked by PRINCE10001kibigfan, 1 month ago

Solve pls


don't spam​

Attachments:

Answers

Answered by PRINCE100001
4

Given :-

\begin{gathered}\rm\lvert\vec a\lvert = 5 \\ \\ \rm\lvert\vec b\lvert =4\\ \\ \rm\lvert\vec c\lvert =3\end{gathered} </p><p>

\rm\vec a +\vec b +\vec c = 0

To find :-

\rm\lvert\vec a.\vec b +\vec b.\vec c +\vec c.\vec a \lvert

Solution :-

\rm\longrightarrow{(\rm \vec a +\vec b +\vec c)}^{2} = {( \rm\lvert\vec a\lvert )}^{2} + {( \rm\lvert\vec b\lvert )}^{2} + {( \rm\lvert\vec c\lvert )}^{2} + 2(\rm\vec a.\vec b +\vec b.\vec c +\vec c.\vec a )

\rm\longrightarrow 0= {(5)}^{2} + {( 4)}^{2} + {( 3)}^{2} + 2(\rm\vec a.\vec b +\vec b.\vec c +\vec c.\vec a )

\rm\longrightarrow 0= 25 + 16 + 9 + 2(\rm\vec a.\vec b +\vec b.\vec c +\vec c.\vec a )

\rm\longrightarrow 0= 50+ 2(\rm\vec a.\vec b +\vec b.\vec c +\vec c.\vec a )

\rm\longrightarrow - 50= 2(\rm\vec a.\vec b +\vec b.\vec c +\vec c.\vec a )

\rm\longrightarrow - 25= \rm\vec a.\vec b +\vec b.\vec c +\vec c.\vec a

\rm\longrightarrow \lvert - 25 \lvert= \rm\lvert\vec a.\vec b +\vec b.\vec c +\vec c.\vec a \lvert

\rm\longrightarrow 25= \rm\lvert\vec a.\vec b +\vec b.\vec c +\vec c.\vec a \lvert

Answer :-

Option (a) 25 is correct

Similar questions