Math, asked by Anonymous, 19 days ago

solve plsss



full expain



Attachments:

Answers

Answered by varadkulkarni172
0

5.66

Step-by-step explanation:

On solving the 1st equation we get tan theta =3/4

so theta = 37 (basic trigonometry )

so substitution we get tan (5.6)=0.09

Happy??

Answered by mathdude500
1

Question :-

If 3 cosθ = 4 sinθ, then what is the value of tan(45° + θ) ?

\large\underline{\sf{Solution-}}

Given that,

\rm \: 3cos\theta  = 4sin\theta  \\

can be further rewritten as

\rm \: \dfrac{sin\theta }{cos\theta } = \dfrac{3}{4}  \\

\rm\implies \:tan\theta  = \dfrac{3}{4}  -  -  - (1) \\

Now, Consider

\rm \: tan(45 \degree \:  +  \: \theta) \\

We know,

\boxed{ \rm{ \:tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany}  \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{tan45\degree  + tan\theta }{1 - tan45\degree  \: tan\theta }  \\

\rm \:  =  \: \dfrac{1 + tan\theta }{1 - tan\theta } \\

So, on substituting the value from equation (1), we get

\rm \:  =  \: \dfrac{1 + \dfrac{3}{4} }{1 - \dfrac{3}{4} }  \\

\rm \:  =  \: \dfrac{\dfrac{4 + 3}{4} }{\dfrac{4 - 3}{4} }  \\

\rm \:  =  \: \dfrac{\dfrac{7}{4} }{\dfrac{1}{4} }  \\

\rm \:  =  \: 7 \\

Hence,

\rm\implies \:\rm \: tan(45 \degree \:  +  \: \theta) = 7 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(x  -  y) = sinx \: cosy \:  -  \: siny \: cosx}\\ \\ \bigstar \: \bf{sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx}\\ \\ \bigstar \: \bf{cos(x + y) = cosx \: cosy \: -  \: sinx \: siny}\\ \\ \bigstar \: \bf{cos(x - y) = cosx \: cosy \:+\: siny \: sinx}\\ \\ \bigstar \: \bf{tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany} }\\ \\ \bigstar \: \bf{tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany} }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions